Pairwise comparison tables within the deck of cards method in multiple criteria decision aiding

Abstract This paper deals with an improved version of the deck of cards method to render the construction of ratio and interval scales more “accurate” compared to the ones built in the original version. The improvement comes from the fact that we can account for a richer and finer preference information provided by the decision-maker, which permits a more accurate modeling of the strength of preference between different levels of a scale. Instead of considering only the number of blank cards between consecutive positions in the ranking of objects, such as criteria and scale levels, we consider also the number of blank cards between not consecutive positions in the ranking. This information is collected in a pairwise comparison table that is not necessarily built with precise values. We can consider imprecise information provided in the form of intervals and missing values. Since the provided information is not necessarily consistent, we propose also some procedures to help the decision-maker to make consistent her evaluations in a co-constructive way interacting with an analyst and reflecting and revising her judgments. A didactic example will illustrate the application of the method.

[1]  Isabella Maria Lami,et al.  The introduction of the SRF-II method to compare hypothesis of adaptive reuse for an iconic historical building , 2020, Operational Research.

[2]  J. Figueira,et al.  A survey on stochastic multicriteria acceptability analysis methods , 2008 .

[3]  Francesca Abastante,et al.  A new parsimonious AHP methodology: Assigning priorities to many objects by comparing pairwise few reference objects , 2019, Expert Syst. Appl..

[4]  José Rui Figueira,et al.  On the Choquet multiple criteria preference aggregation model: Theoretical and practical insights from a real-world application , 2018, Eur. J. Oper. Res..

[5]  Renata Pelissari,et al.  SMAA methods and their applications: a literature review and future research directions , 2020, Ann. Oper. Res..

[6]  P. Harker Alternative modes of questioning in the analytic hierarchy process , 1987 .

[7]  B. Fasolo,et al.  Tailoring value elicitation to decision makers' numeracy and fluency: Expressing value judgments in numbers or words , 2014 .

[8]  F. A. Lootsma,et al.  Conflict resolution via pairwise comparison of concessions , 1989 .

[9]  Alessio Ishizaka,et al.  Influence of aggregation and measurement scale on ranking a compromise alternative in AHP , 2009, J. Oper. Res. Soc..

[10]  W. Edwards,et al.  Decision Analysis and Behavioral Research , 1986 .

[11]  Ward Edwards,et al.  How to Use Multiattribute Utility Measurement for Social Decisionmaking , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[12]  Salvatore Greco,et al.  An Overview of ELECTRE Methods and their Recent Extensions , 2013 .

[13]  C. B. E. Costa,et al.  MACBETH — An Interactive Path Towards the Construction of Cardinal Value Functions , 1994 .

[14]  Salvatore Greco,et al.  Robust Ranking of Universities Evaluated by Hierarchical and Interacting Criteria , 2018, Multiple Criteria Decision Making and Aiding.

[15]  E. Choo,et al.  Interpretation of criteria weights in multicriteria decision making , 1999 .

[16]  Po-Lung Yu,et al.  Assessing priority weights from subsets of pairwise comparisons in multiple criteria optimization problems , 1995 .

[17]  Lucien Yves Maystre,et al.  Méthodes multicritères ELECTRE : description, conseils pratiques et cas d'application à la gestion environnementale , 1994 .

[18]  G. Choquet Theory of capacities , 1954 .

[19]  Salvatore Greco,et al.  Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions , 2008, Eur. J. Oper. Res..

[20]  J. Baron,et al.  Investigating the effect of stimulus range on attribute weight. , 1991, Journal of experimental psychology. Human perception and performance.

[21]  Jean Pierre Brans,et al.  HOW TO SELECT AND HOW TO RANK PROJECTS: THE PROMETHEE METHOD , 1986 .

[22]  Matthias Ehrgott,et al.  Multiple criteria decision analysis: state of the art surveys , 2005 .

[23]  Tommi Tervonen,et al.  Notes on 'Hit-And-Run enables efficient weight generation for simulation-based multiple criteria decision analysis' , 2014, Eur. J. Oper. Res..

[24]  Tommi Tervonen,et al.  Hit-And-Run enables efficient weight generation for simulation-based multiple criteria decision analysis , 2013, Eur. J. Oper. Res..

[25]  Robert L. Smith,et al.  Efficient Monte Carlo Procedures for Generating Points Uniformly Distributed over Bounded Regions , 1984, Oper. Res..

[26]  M. Grabisch The application of fuzzy integrals in multicriteria decision making , 1996 .

[27]  S. Greco,et al.  A robust ranking method extending ELECTRE III to hierarchy of interacting criteria, imprecise weights and stochastic analysis , 2017 .

[28]  Martin Weber,et al.  The Effect of Attribute Ranges on Weights in Multiattribute Utility Measurements , 1993 .

[29]  Lajos Rónyai,et al.  On optimal completion of incomplete pairwise comparison matrices , 2010, Math. Comput. Model..

[30]  Luis G. Vargas,et al.  The theory of ratio scale estimation: Saaty's analytic hierarchy process , 1987 .

[31]  P. Harker Incomplete pairwise comparisons in the analytic hierarchy process , 1987 .

[32]  Carlos A. Bana e Costa,et al.  On the mathematical foundations of MACBETH , 2016 .

[33]  B. Roy The outranking approach and the foundations of electre methods , 1991 .

[34]  T. L. Saaty A Scaling Method for Priorities in Hierarchical Structures , 1977 .

[35]  W. Goldstein Judgments of relative importance in decision making: Global vs local interpretations of subjective weight , 1990 .

[36]  Bernard Roy,et al.  Determining the weights of criteria in the ELECTRE type methods with a revised Simos' procedure , 2002, Eur. J. Oper. Res..

[37]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[38]  G. Gescheider Psychophysics: The Fundamentals , 1997 .

[39]  Kannan Govindan,et al.  ELECTRE: A comprehensive literature review on methodologies and applications , 2016, Eur. J. Oper. Res..

[40]  Bernard Roy,et al.  Decision science or decision-aid science? , 1993 .

[41]  Eleftherios Siskos,et al.  Elicitation of criteria importance weights through the Simos method: A robustness concern , 2015, Eur. J. Oper. Res..

[42]  Risto Lahdelma,et al.  SMAA - Stochastic multiobjective acceptability analysis , 1998, Eur. J. Oper. Res..

[43]  Pekka Korhonen,et al.  Judgments of importance revisited: What do they mean? , 2019, J. Oper. Res. Soc..

[44]  J. Siskos Assessing a set of additive utility functions for multicriteria decision-making , 1982 .

[45]  F. H. Barron,et al.  SMARTS and SMARTER: Improved Simple Methods for Multiattribute Utility Measurement , 1994 .

[46]  Carlos A. Bana e Costa,et al.  A critical analysis of the eigenvalue method used to derive priorities in AHP , 2008, Eur. J. Oper. Res..

[47]  Theodor J. Stewart,et al.  Multiple criteria decision analysis - an integrated approach , 2001 .

[48]  G. W. Fischer Range Sensitivity of Attribute Weights in Multiattribute Value Models , 1995 .

[49]  R. Hämäläinen,et al.  On the measurement of preferences in the analytic hierarchy process , 1997 .

[50]  Stan Schenkerman,et al.  Use and Abuse of Weights in Multiple Objective Decision Support Models , 1991 .