LADE: Learning Automata Based Differential Evolution

Many engineering optimization problems do not standard mathematical techniques, and cannot be solved using exact algorithms. Evolutionary algorithms have been successfully used for solving such optimization problems. Differential evolution is a simple and efficient population-based evolutionary algorithm for global optimization, which has been applied in many real world engineering applications. However, the performance of this algorithm is sensitive to appropriate choice of its parameters as well as its mutation strategy. In this paper, we propose two different underlying classes of learning automata based differential evolution for adaptive selection of crossover probability and mutation strategy in differential evolution. In the first class, genomes of the population use the same mutation strategy and crossover probability. In the second class, each genome of the population adjusts its own mutation strategy and crossover probability parameter separately. The performance of the proposed methods is analyzed on ten benchmark functions from CEC 2005 and one real-life optimization problem. The obtained results show the efficiency of the proposed algorithms for solving real-parameter function optimization problems.

[1]  Francisco Herrera,et al.  A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization , 2009, J. Heuristics.

[2]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[3]  Erik Valdemar Cuevas Jiménez,et al.  Seeking multi-thresholds for image segmentation with Learning Automata , 2011, Machine Vision and Applications.

[4]  Larry E. Toothaker,et al.  Multiple Comparison Procedures , 1992 .

[5]  Carlos García-Martínez,et al.  Global and local real-coded genetic algorithms based on parent-centric crossover operators , 2008, Eur. J. Oper. Res..

[6]  Q. Henry Wu,et al.  Function optimisation by learning automata , 2013, Inf. Sci..

[7]  Kumpati S. Narendra,et al.  Learning automata - an introduction , 1989 .

[8]  Jouni Lampinen,et al.  A Fuzzy Adaptive Differential Evolution Algorithm , 2002, 2002 IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering. TENCOM '02. Proceedings..

[9]  Radha Thangaraj,et al.  A New Differential Evolution Algorithm for Solving Global Optimization Problems , 2009, 2009 International Conference on Advanced Computer Control.

[10]  Mohammad Reza Meybodi,et al.  Sampling from complex networks using distributed learning automata , 2014 .

[11]  Mohammad Reza Meybodi,et al.  Success rate group search optimiser , 2016, J. Exp. Theor. Artif. Intell..

[12]  Syeda Darakhshan Jabeen,et al.  Split and Discard Strategy: a New Approach for Constrained Global Optimization , 2013, Int. J. Artif. Intell. Tools.

[13]  Mohammad Reza Meybodi,et al.  CDEPSO: a bi-population hybrid approach for dynamic optimization problems , 2014, Applied Intelligence.

[14]  Xavier Blasco Ferragud,et al.  Hybrid DE algorithm with adaptive crossover operator for solving real-world numerical optimization problems , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[15]  Swagatam Das,et al.  A Cluster-Based Differential Evolution Algorithm With External Archive for Optimization in Dynamic Environments , 2013, IEEE Transactions on Cybernetics.

[16]  Mohammad Reza Meybodi,et al.  Tracking Extrema in Dynamic Environments Using a Learning Automata-Based Immune Algorithm , 2010, FGIT-GDC/CA.

[17]  ZaharieDaniela Influence of crossover on the behavior of Differential Evolution Algorithms , 2009 .

[18]  Zixing Cai,et al.  A Novel Evolutionary Algorithm Ensemble for Global numerical Optimization , 2013, Int. J. Artif. Intell. Tools.

[19]  Uday K. Chakraborty,et al.  Advances in Differential Evolution , 2010 .

[20]  P. N. Suganthan,et al.  Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[21]  Millie Pant,et al.  An efficient Differential Evolution based algorithm for solving multi-objective optimization problems , 2011, Eur. J. Oper. Res..

[22]  P. N. Suganthan,et al.  Problem Definitions and Evaluation Criteria for CEC 2011 Competition on Testing Evolutionary Algorithms on Real World Optimization Problems , 2011 .

[23]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[24]  Ajith Abraham,et al.  Unconventional initialization methods for differential evolution , 2013, Appl. Math. Comput..

[25]  Amit Konar,et al.  Annealed Differential Evolution , 2007, 2007 IEEE Congress on Evolutionary Computation.

[26]  Mohammad Reza Meybodi,et al.  Alpinist CellularDE: a cellular based optimization algorithm for dynamic environments , 2012, GECCO '12.

[27]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[28]  Mehmet Fatih Tasgetiren,et al.  Differential evolution algorithm with ensemble of parameters and mutation strategies , 2011, Appl. Soft Comput..

[29]  Amit Konar,et al.  Differential Evolution Using a Neighborhood-Based Mutation Operator , 2009, IEEE Transactions on Evolutionary Computation.

[30]  F. Wilcoxon Individual Comparisons by Ranking Methods , 1945 .

[31]  Mohammad Reza Meybodi,et al.  LACAIS: Learning Automata Based Cooperative Artificial Immune System for Function Optimization , 2010, IC3.

[32]  Mohammad Reza Meybodi,et al.  A cellular learning automata-based deployment strategy for mobile wireless sensor networks , 2011, J. Parallel Distributed Comput..

[33]  Amit Konar,et al.  Two improved differential evolution schemes for faster global search , 2005, GECCO '05.

[34]  Asok Ray,et al.  Optimal path-planning under finite memory obstacle dynamics based on probabilistic finite state automata models , 2009, 2009 American Control Conference.

[35]  Álvaro Fialho,et al.  Adaptive strategy selection in differential evolution , 2010, GECCO '10.

[36]  M .,et al.  Some hybrid models to improve Firefly algorithm performance , 2011 .

[37]  Ying Liang,et al.  A novel chaos danger model immune algorithm , 2013, Commun. Nonlinear Sci. Numer. Simul..

[38]  M. R. Meybodi,et al.  CLA-DE: a hybrid model based on cellular learning automata for numerical optimization , 2012, Applied Intelligence.

[39]  B. Lee,et al.  Application of S-model learning automata for multi-objective optimal operation of power systems , 2001 .

[40]  H. Keselman,et al.  Multiple Comparison Procedures , 2005 .

[41]  Mohammad Reza Meybodi,et al.  Finding Maximum Clique in Stochastic Graphs Using Distributed Learning Automata , 2015, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[42]  A. Tamhane,et al.  Multiple Comparison Procedures , 1989 .

[43]  Mohammad Mehdi Ebadzadeh,et al.  Adaptive cooperative particle swarm optimizer , 2013, Applied Intelligence.

[44]  Mohammad Reza Meybodi,et al.  Cellular learning automata based algorithm for solving minimum vertex cover problem , 2014, 2014 22nd Iranian Conference on Electrical Engineering (ICEE).

[45]  M.R. Meybodi,et al.  Learning automata-based co-evolutionary genetic algorithms for function optimization , 2008, 2008 6th International Symposium on Intelligent Systems and Informatics.

[46]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[47]  Mohammad Reza Meybodi,et al.  An adaptive mutation operator for artificial immune network using learning automata in dynamic environments , 2010, 2010 Second World Congress on Nature and Biologically Inspired Computing (NaBIC).

[48]  Pablo Moscato,et al.  Handbook of Applied Optimization , 2000 .

[49]  Mohammad Reza Meybodi,et al.  An improved Differential Evolution algorithm using learning automata and population topologies , 2014, Applied Intelligence.

[50]  Tapabrata Ray,et al.  Performance of a hybrid EA-DE-memetic algorithm on CEC 2011 real world optimization problems , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[51]  Jouni Lampinen,et al.  A Fuzzy Adaptive Differential Evolution Algorithm , 2005, Soft Comput..

[52]  Mohammad Reza Meybodi,et al.  Some Hybrid models to Improve Firefly Algorithm Performance , 2012 .

[53]  Javad Akbari Torkestani An adaptive learning automata-based ranking function discovery algorithm , 2012, Journal of Intelligent Information Systems.

[54]  Mohammad Reza Meybodi,et al.  Cellular edge detection: Combining cellular automata and cellular learning automata , 2015 .

[55]  Arthur C. Sanderson,et al.  JADE: Adaptive Differential Evolution With Optional External Archive , 2009, IEEE Transactions on Evolutionary Computation.

[56]  M R Meybodi,et al.  APPLICATIONS OF CELLULAR LEARNING AUTOMATA TO IMAGE PROCESSING , 2003 .

[57]  Q. Henry Wu,et al.  Multi-objective optimization by learning automata , 2013, J. Glob. Optim..

[58]  Mohammad Reza Meybodi,et al.  A note on the learning automata based algorithms for adaptive parameter selection in PSO , 2011, Appl. Soft Comput..

[59]  Bo Jiang,et al.  Particle swarm optimization with age-group topology for multimodal functions and data clustering , 2013, Commun. Nonlinear Sci. Numer. Simul..

[60]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for global optimization of multimodal functions , 2006, IEEE Transactions on Evolutionary Computation.

[61]  Hojjat Adeli,et al.  Water Drop Algorithms , 2014, Int. J. Artif. Intell. Tools.

[62]  Mohammad Reza Meybodi,et al.  A multi-swarm cellular PSO based on clonal selection algorithm in dynamic environments , 2012, 2012 International Conference on Informatics, Electronics & Vision (ICIEV).

[63]  Hamid Beigy,et al.  Cellular learning automata with external input and its applications in pattern recognition , 2009, 2009 Fifth International Conference on Soft Computing, Computing with Words and Perceptions in System Analysis, Decision and Control.

[64]  Kumpati S. Narendra,et al.  Learning Automata - A Survey , 1974, IEEE Trans. Syst. Man Cybern..

[65]  Self-adaptive differential evolution algorithm with α-constrained-domination principle for constrained multi-objective optimization , 2012, Soft Comput..

[66]  Qingfu Zhang,et al.  DE/EDA: A new evolutionary algorithm for global optimization , 2005, Inf. Sci..

[67]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[68]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[69]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[70]  Fang Liu,et al.  Lamarckian Learning in Clonal Selection Algorithm for Numerical Optimization , 2010, Int. J. Artif. Intell. Tools.

[71]  Mohammad Reza Meybodi,et al.  An intelligent protocol to channel assignment in wireless sensor networks: Learning automata approach , 2010, 2010 International Conference on Information, Networking and Automation (ICINA).

[72]  Daniela Zaharie,et al.  Influence of crossover on the behavior of Differential Evolution Algorithms , 2009, Appl. Soft Comput..

[73]  Marco Dorigo,et al.  Ant colony optimization for continuous domains , 2008, Eur. J. Oper. Res..

[74]  Mohammad Reza Meybodi,et al.  A new fine-grained evolutionary algorithm based on cellular learning automata , 2006, Int. J. Hybrid Intell. Syst..

[75]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[76]  M.M.A. Salama,et al.  Opposition-Based Differential Evolution , 2008, IEEE Transactions on Evolutionary Computation.

[77]  Ruhul A. Sarker,et al.  Differential evolution with multiple strategies for solving CEC2011 real-world numerical optimization problems , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[78]  Abdul Hanan Abdullah,et al.  LAHS: A novel harmony search algorithm based on learning automata , 2013, Commun. Nonlinear Sci. Numer. Simul..

[79]  Ioannis G. Tsoulos,et al.  Solving constrained optimization problems using a novel genetic algorithm , 2009, Appl. Math. Comput..

[80]  Ajith Abraham,et al.  Swarm Directions Embedded differential Evolution for Faster convergence of Global Optimization Problems , 2012, Int. J. Artif. Intell. Tools.

[81]  Qingfu Zhang,et al.  Differential Evolution With Composite Trial Vector Generation Strategies and Control Parameters , 2011, IEEE Transactions on Evolutionary Computation.

[82]  P. S. Sastry,et al.  Varieties of learning automata: an overview , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[83]  Xin Yao,et al.  Large scale evolutionary optimization using cooperative coevolution , 2008, Inf. Sci..

[84]  Qingfu Zhang,et al.  Enhancing the search ability of differential evolution through orthogonal crossover , 2012, Inf. Sci..