An easily implementable fourth-order method for the time integration of wave problems
暂无分享,去创建一个
[1] D. Gottlieb,et al. Numerical analysis of spectral methods : theory and applications , 1977 .
[2] R. D. Richtmyer,et al. Difference methods for initial-value problems , 1959 .
[3] N. Zabusky,et al. Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .
[4] M. Revilla. Simple time and space adaptation in one-dimensional evolutionary partial differential equations , 1986 .
[5] J. M. Sanz-Serna,et al. Order conditions for canonical Runge-Kutta schemes , 1991 .
[6] F. Z. Nouri,et al. A comparison of Fourier pseudospectral methods for the solution of the Korteweg-de Vries equation , 1989 .
[7] B. Fornberg. On a Fourier method for the integration of hyperbolic equations , 1975 .
[8] K. Feng. Difference schemes for Hamiltonian formalism and symplectic geometry , 1986 .
[9] C. Scovel,et al. Symplectic integration of Hamiltonian systems , 1990 .
[10] J. M. Sanz-Serna,et al. Petrov-Galerkin methods for nonlinear dispersive waves , 1981 .
[11] T. A. Zang,et al. Spectral methods for fluid dynamics , 1987 .
[12] B. Fornberg. The pseudospectral method: Comparisons with finite differences for the elastic wave equation , 1987 .
[13] J. M. Sanz-Serna,et al. Split-step spectral schemes for nonlinear Dirac systems , 1989 .
[14] R. Ruth. A Can0nical Integrati0n Technique , 1983, IEEE Transactions on Nuclear Science.
[15] Ernst Hairer,et al. Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .
[16] J. M. Sanz-Serna,et al. Conservation of integrals and symplectic structure in the integration of differential equations by multistep methods , 1992 .
[17] H. Tal-Ezer,et al. Spectral methods in time for hyperbolic equations , 1986 .
[18] J. M. Sanz-Serna,et al. A Hamiltonian explicit algorithm with spectral accuracy for the `good' Boussinesq system , 1990 .
[19] Bengt Fornberg,et al. A numerical and theoretical study of certain nonlinear wave phenomena , 1978, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[20] J. G. Verwer,et al. Conerservative and Nonconservative Schemes for the Solution of the Nonlinear Schrödinger Equation , 1986 .
[21] F. Lasagni. Canonical Runge-Kutta methods , 1988 .
[22] J. M. Sanz-Serna,et al. Runge-kutta schemes for Hamiltonian systems , 1988 .
[23] Wojciech Rozmus,et al. A symplectic integration algorithm for separable Hamiltonian functions , 1990 .
[24] J. M. Sanz-Serna,et al. Stability and convergence at the PDE/stiff ODE interface , 1989 .
[25] J. Sanz-Serna,et al. Studies in numerical nonlinear instability III: Augmented Hamiltonian systems , 1987 .
[26] J. M. Sanz-Serna,et al. Order conditions for canonical Runge-Kutta-Nyström methods , 1992 .
[27] J. M. Sanz-Serna,et al. Symplectic integrators for Hamiltonian problems: an overview , 1992, Acta Numerica.
[28] J. Verwer,et al. Convergence analysis of one-step schemes in the method of lines , 1989, Conference on Numerical Ordinary Differential Equations.