An easily implementable fourth-order method for the time integration of wave problems

Abstract We are concerned with the time-integration of systems of ordinary differential equations arising from the space discretization of partial differential wave equations with smooth solutions. A method is suggested that, while being as easily implementable as the standard implicit mid-point rule, is fourth-order accurate. The new method is symplectic so that it is very well suited for long-time integrations of problems with a Hamiltonian structure. Numerical experiments are reported that refer to a fourth-order Galerkin space discretization of the Korteweg-de Vries equation and to a pseudospectral space discretization of the same equation.

[1]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[2]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .

[3]  N. Zabusky,et al.  Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .

[4]  M. Revilla Simple time and space adaptation in one-dimensional evolutionary partial differential equations , 1986 .

[5]  J. M. Sanz-Serna,et al.  Order conditions for canonical Runge-Kutta schemes , 1991 .

[6]  F. Z. Nouri,et al.  A comparison of Fourier pseudospectral methods for the solution of the Korteweg-de Vries equation , 1989 .

[7]  B. Fornberg On a Fourier method for the integration of hyperbolic equations , 1975 .

[8]  K. Feng Difference schemes for Hamiltonian formalism and symplectic geometry , 1986 .

[9]  C. Scovel,et al.  Symplectic integration of Hamiltonian systems , 1990 .

[10]  J. M. Sanz-Serna,et al.  Petrov-Galerkin methods for nonlinear dispersive waves , 1981 .

[11]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[12]  B. Fornberg The pseudospectral method: Comparisons with finite differences for the elastic wave equation , 1987 .

[13]  J. M. Sanz-Serna,et al.  Split-step spectral schemes for nonlinear Dirac systems , 1989 .

[14]  R. Ruth A Can0nical Integrati0n Technique , 1983, IEEE Transactions on Nuclear Science.

[15]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[16]  J. M. Sanz-Serna,et al.  Conservation of integrals and symplectic structure in the integration of differential equations by multistep methods , 1992 .

[17]  H. Tal-Ezer,et al.  Spectral methods in time for hyperbolic equations , 1986 .

[18]  J. M. Sanz-Serna,et al.  A Hamiltonian explicit algorithm with spectral accuracy for the `good' Boussinesq system , 1990 .

[19]  Bengt Fornberg,et al.  A numerical and theoretical study of certain nonlinear wave phenomena , 1978, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[20]  J. G. Verwer,et al.  Conerservative and Nonconservative Schemes for the Solution of the Nonlinear Schrödinger Equation , 1986 .

[21]  F. Lasagni Canonical Runge-Kutta methods , 1988 .

[22]  J. M. Sanz-Serna,et al.  Runge-kutta schemes for Hamiltonian systems , 1988 .

[23]  Wojciech Rozmus,et al.  A symplectic integration algorithm for separable Hamiltonian functions , 1990 .

[24]  J. M. Sanz-Serna,et al.  Stability and convergence at the PDE/stiff ODE interface , 1989 .

[25]  J. Sanz-Serna,et al.  Studies in numerical nonlinear instability III: Augmented Hamiltonian systems , 1987 .

[26]  J. M. Sanz-Serna,et al.  Order conditions for canonical Runge-Kutta-Nyström methods , 1992 .

[27]  J. M. Sanz-Serna,et al.  Symplectic integrators for Hamiltonian problems: an overview , 1992, Acta Numerica.

[28]  J. Verwer,et al.  Convergence analysis of one-step schemes in the method of lines , 1989, Conference on Numerical Ordinary Differential Equations.