A low power low noise amplifier employing negative feedback and current reuse techniques

This paper presents a low power wideband differential Low Noise Amplifier (LNA) suited for multimode receivers and Wireless Sensor Networks (WSN) in a 0.18µm CMOS technology. By using negative feedback, the stringent trade-off between the input matching and the transconductance (gm) is broken and the required transconductance of input transistor in Common-Gate (CG) LNA is decreased. As a result of this and also using the current reuse implementation scheme, power consumption (PDC) is significantly reduced. The circuit provides high gain and decreased Noise Figure (NF) in spite of low PDC. The LNA structure is fully inductorless, and the core circuit consumes only 1.3mW from a 1.8-V supply occupying an area of 0.032mm2. A maximum voltage gain of 20.1dB is provided with 3dB bandwidth up to 3.3GHz. The input matching is better than -16dB from 20MHz to 3.3GHz. The minimum NF is 3.2dB with third order Input Intercept Point (IIP3) of -2.4dBm. A 1.3mW, inductorless differential Common Gate Low Noise Amplifier is presented in this paper.The idea is to remove the stringent trade-off between the input matching and power consumption by using the transconductance of the tail transistor.Unlike gm-boosting, the proposed technique doesn't degrade the linearity.The circuit is low power, low active area and wideband, so it's suitable for multimode and Wireless Sensor Network applications.

[1]  Heng Zhang,et al.  Linearization Techniques for CMOS Low Noise Amplifiers: A Tutorial , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[2]  Chuan Qin,et al.  An inductorless wideband low noise amplifier with current reuse and linearity enhancement , 2013, 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013).

[3]  Shen-Iuan Liu,et al.  Inductorless Wideband CMOS Low-Noise Amplifiers Using Noise-Canceling Technique , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[4]  E. Sanchez-Sinencio,et al.  A 2.8-mW Sub-2-dB Noise-Figure Inductorless Wideband CMOS LNA Employing Multiple Feedback , 2011, IEEE Transactions on Microwave Theory and Techniques.

[5]  Donggu Im,et al.  A Wideband Digital TV Receiver Front-End With Noise and Distortion Cancellation , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[6]  Gholamreza Zare Fatin,et al.  A wideband balun–LNA , 2014 .

[7]  Antonio Liscidini,et al.  Analysis and Design of Configurable LNAs in Feedback Common-Gate Topologies , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[8]  Liguo Sun,et al.  0.4 mw wideband lna with double g m enhancement and feed-forward noise cancellation , 2014 .

[9]  A. Bevilacqua,et al.  An ultrawideband CMOS low-noise amplifier for 3.1-10.6-GHz wireless receivers , 2004, IEEE Journal of Solid-State Circuits.

[10]  J. Laskar,et al.  Resistive-Feedback CMOS Low-Noise Amplifiers for Multiband Applications , 2008, IEEE Transactions on Microwave Theory and Techniques.

[11]  Jusung Kim,et al.  Wideband Common-Gate CMOS LNA Employing Dual Negative Feedback With Simultaneous Noise, Gain, and Bandwidth Optimization , 2010, IEEE Transactions on Microwave Theory and Techniques.

[12]  David J. Allstot,et al.  A capacitor cross-coupled common-gate low-noise amplifier , 2005, IEEE Transactions on Circuits and Systems II: Express Briefs.

[13]  Kuo-Liang Deng,et al.  A 0.5-14-GHz 10.6-dB CMOS cascode distributed amplifier , 2003, 2003 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.03CH37408).

[14]  D.J. Allstot,et al.  G/sub m/-boosted common-gate LNA and differential colpitts VCO/QVCO in 0.18-/spl mu/m CMOS , 2005, IEEE Journal of Solid-State Circuits.

[15]  P. Wambacq,et al.  Low-Area Active-Feedback Low-Noise Amplifier Design in Scaled Digital CMOS , 2008, IEEE Journal of Solid-State Circuits.

[16]  S. Raman,et al.  Analysis, Design, and $X$-Band Implementation of a Self-Biased Active Feedback $G_{m}$ -Boosted Common-Gate CMOS LNA , 2009, IEEE Transactions on Microwave Theory and Techniques.

[17]  Marion Kee,et al.  Analysis , 2004, Machine Translation.

[18]  R.W. Brodersen,et al.  Design of a Sub-mW 960-MHz UWB CMOS LNA , 2006, IEEE Journal of Solid-State Circuits.

[19]  François Belmas,et al.  A Low Power Inductorless LNA With Double Gm Enhancement in 130 nm CMOS , 2012, RFIC 2012.

[20]  Meng-Ting Hsu,et al.  Low power high gain CMOS LNA based on inverter cell and self-body bias for UWB receivers , 2014, Microelectron. J..

[21]  Y. Manoli,et al.  A low-power differential common-gate LNA , 2008, 2008 51st Midwest Symposium on Circuits and Systems.

[22]  Jean-Michel Fournier,et al.  A Low Power Inductorless LNA With Double ${\rm G} _{\rm m}$ Enhancement in 130 nm CMOS , 2012, IEEE Journal of Solid-State Circuits.

[23]  K. Vavelidis,et al.  A dual-band 5.15-5.35-GHz, 2.4-2.5-GHz 0.18-/spl mu/m CMOS transceiver for 802.11a/b/g wireless LAN , 2004, IEEE Journal of Solid-State Circuits.

[24]  X Li,et al.  Gm-boosted common-gate LNA and differential colpitts VCO/QVCO in 0.18-μm CMOS , 2005 .

[26]  G. H. Zare Fatin,et al.  A technique for improving gain and noise figure of common-gate wideband LNAs , 2010 .

[27]  T.W. Kim,et al.  A Common-Gate Amplifier With Transconductance Nonlinearity Cancellation and Its High-Frequency Analysis Using the Volterra Series , 2009, IEEE Transactions on Microwave Theory and Techniques.

[28]  Sang-Gug Lee,et al.  An ultra-wideband CMOS low noise amplifier for 3-5-GHz UWB system , 2005 .

[29]  M. Zargari,et al.  A single-chip dual-band tri-mode CMOS transceiver for IEEE 802.11a/b/g wireless LAN , 2004, IEEE Journal of Solid-State Circuits.

[30]  Yue Ping Zhang,et al.  A 1.5-V 2–9.6-GHz Inductorless Low-Noise Amplifier in 0.13-$\mu{\hbox {m}} $ CMOS , 2007, IEEE Transactions on Microwave Theory and Techniques.