Remarks on the Well-Posedness of the Nonlinear Cauchy Problem

We show that hyperbolicity is a necessary condition for the well posedness of the noncharacteristic Cauchy problem for nonlinear partial differential equations. We give conditions on the initial data which are necessary for the existence of solutions and we analyze Hadamard's instabilities in Sobolev spaces. We also show that genuinely nonlinear equations raise new interesting problems.

[1]  Peter D. Lax,et al.  Asymptotic solutions of oscillatory initial value problems , 1957 .

[2]  Fritz John,et al.  Continuous dependence on data for solutions of partial differential equations with a prescribed bound , 1960 .

[3]  Peter D. Lax,et al.  Nonlinear hyperbolic equations , 1953 .

[4]  K. Yagdjian The Lax-Mizohata theorem for nonlinear gauge invariant equations , 2002 .

[5]  Jacques-Louis Lions,et al.  On Some Questions in Boundary Value Problems of Mathematical Physics , 1978 .

[6]  K. Yagdjian A NOTE ON LAX-MIZOHATA THEOREM FOR QUASILINEAR EQUATIONS , 1998 .

[7]  M. Sablé-Tougeron,et al.  Régularité microlocale pour des problèmes aux limites non linéaires , 1984 .

[8]  J. Hadamard,et al.  Lectures on Cauchy's Problem in Linear Partial Differential Equations , 1924 .

[9]  S. Wakabayashi THE LAX-MIZOHATA THEOREM FOR NONLINEAR CAUCHY PROBLEMS* , 2001 .

[10]  T. Nishitani On the Lax-Mizohata theorem in the analytic and Gevrey classes , 1977 .

[11]  Haitao Fan A vanishing viscosity approach on the dynamics of phase transitions in Van Der Waals fluids , 1993 .

[12]  S. Mizohata Some remarks on the Cauchy problem , 1961 .

[13]  J. Hounie,et al.  Well posed cauchy problems for complex nonlinear equations must be semilinear , 1992 .

[14]  HAITAO FAN,et al.  On a Model of the Dynamics of Liquid/Vapor Phase Transitions , 2000, SIAM J. Appl. Math..

[15]  J. Bony,et al.  Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires , 1980 .

[16]  G. Métivier Counterexamples to Hölmgren's uniqueness for analytic non linear Cauchy problems , 1993 .

[17]  S. Spagnolo,et al.  Global solvability for the degenerate Kirchhoff equation with real analytic data , 1992 .

[18]  V. Ivrii Linear Hyperbolic Equations , 1993 .

[19]  G. Kirchhoff,et al.  Vorlesungen über Mechanik , 1897 .

[20]  S. Benzoni-Gavage,et al.  Stability of Subsonic Planar Phase Boundaries in a van der Waals Fluid , 1999 .

[21]  M. Slemrod Admissibility criteria for propagating phase boundaries in a van der Waals fluid , 1983 .