Remarks on the Well-Posedness of the Nonlinear Cauchy Problem
暂无分享,去创建一个
[1] Peter D. Lax,et al. Asymptotic solutions of oscillatory initial value problems , 1957 .
[2] Fritz John,et al. Continuous dependence on data for solutions of partial differential equations with a prescribed bound , 1960 .
[3] Peter D. Lax,et al. Nonlinear hyperbolic equations , 1953 .
[4] K. Yagdjian. The Lax-Mizohata theorem for nonlinear gauge invariant equations , 2002 .
[5] Jacques-Louis Lions,et al. On Some Questions in Boundary Value Problems of Mathematical Physics , 1978 .
[6] K. Yagdjian. A NOTE ON LAX-MIZOHATA THEOREM FOR QUASILINEAR EQUATIONS , 1998 .
[7] M. Sablé-Tougeron,et al. Régularité microlocale pour des problèmes aux limites non linéaires , 1984 .
[8] J. Hadamard,et al. Lectures on Cauchy's Problem in Linear Partial Differential Equations , 1924 .
[9] S. Wakabayashi. THE LAX-MIZOHATA THEOREM FOR NONLINEAR CAUCHY PROBLEMS* , 2001 .
[10] T. Nishitani. On the Lax-Mizohata theorem in the analytic and Gevrey classes , 1977 .
[11] Haitao Fan. A vanishing viscosity approach on the dynamics of phase transitions in Van Der Waals fluids , 1993 .
[12] S. Mizohata. Some remarks on the Cauchy problem , 1961 .
[13] J. Hounie,et al. Well posed cauchy problems for complex nonlinear equations must be semilinear , 1992 .
[14] HAITAO FAN,et al. On a Model of the Dynamics of Liquid/Vapor Phase Transitions , 2000, SIAM J. Appl. Math..
[15] J. Bony,et al. Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires , 1980 .
[16] G. Métivier. Counterexamples to Hölmgren's uniqueness for analytic non linear Cauchy problems , 1993 .
[17] S. Spagnolo,et al. Global solvability for the degenerate Kirchhoff equation with real analytic data , 1992 .
[18] V. Ivrii. Linear Hyperbolic Equations , 1993 .
[19] G. Kirchhoff,et al. Vorlesungen über Mechanik , 1897 .
[20] S. Benzoni-Gavage,et al. Stability of Subsonic Planar Phase Boundaries in a van der Waals Fluid , 1999 .
[21] M. Slemrod. Admissibility criteria for propagating phase boundaries in a van der Waals fluid , 1983 .