Convergence of the MAC scheme for the compressible stationary Navier-Stokes equations

We prove in this paper the convergence of the Marker and Cell (MAC) scheme for the discretization of the steady state compressible and isentropic Navier-Stokes equations on two or three-dimensional Cartesian grids. Existence of a solution to the scheme is proven, followed by estimates on approximate solutions, which yield the convergence of the approximate solutions, up to a subsequence, and in an appropriate sense. We then prove that the limit of the approximate solutions satisfies the mass and momentum balance equations, as well as the equation of state, which is the main difficulty of this study.

[1]  Cornelis Vuik,et al.  Segregated solution methods for compressible flow , 2000 .

[2]  Thierry Gallouët,et al.  Convergence of the Marker-and-Cell Scheme for the Incompressible Navier–Stokes Equations on Non-uniform Grids , 2016, Foundations of Computational Mathematics.

[3]  David Hoff,et al.  Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data , 1995 .

[4]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[5]  T. Gallouët,et al.  W1,q stability of the Fortin operator for the MAC scheme , 2012 .

[6]  Thierry Gallouët,et al.  A convergent finite element-finite volume scheme for the compressible Stokes problem. Part II: the isentropic case , 2009, Math. Comput..

[7]  K. Karlsen,et al.  A convergent mixed method for the Stokes approximation of viscous compressible flow , 2009, 0911.1870.

[8]  I. Wenneker,et al.  A Mach‐uniform unstructured staggered grid method , 2002 .

[9]  P. Wesseling Principles of Computational Fluid Dynamics , 2000 .

[10]  Thierry Gallouët,et al.  A convergent finite element-finite volume scheme for the compressible Stokes problem. Part I: The isothermal case , 2007, Math. Comput..

[11]  Parviz Moin,et al.  A semi-implicit method for resolution of acoustic waves in low Mach number flows , 2002 .

[12]  A. A. Amsden,et al.  Numerical calculation of almost incompressible flow , 1968 .

[13]  P. Lions Mathematical topics in fluid mechanics , 1996 .

[14]  Denis Serre,et al.  Large amplitude variations for the density of a compressible viscous fluid. , 1991 .

[15]  A. D. Gosman,et al.  The computation of compressible and incompressible recirculating flows by a non-iterative implicit scheme , 1986 .

[16]  Thierry Gallouët,et al.  An existence proof for the stationary compressible Stokes problem , 2014 .

[17]  Eduard Feireisl,et al.  Dynamics of Viscous Compressible Fluids , 2004 .

[18]  R. Eymard,et al.  Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.

[19]  Thierry Gallouët,et al.  Numerical approximation of the general compressible Stokes problem , 2013 .

[20]  P. Colella,et al.  A Projection Method for Low Speed Flows , 1999 .

[21]  Dragan Vidovic,et al.  A superlinearly convergent Mach-uniform finite volume method for the Euler equations on staggered unstructured grids , 2006, J. Comput. Phys..

[22]  Trygve K. Karper,et al.  A convergent FEM-DG method for the compressible Navier–Stokes equations , 2012, Numerische Mathematik.

[23]  A. Gosman,et al.  Solution of the implicitly discretised reacting flow equations by operator-splitting , 1986 .

[24]  A. A. Amsden,et al.  A numerical fluid dynamics calculation method for all flow speeds , 1971 .

[25]  R. Herbin,et al.  Error estimates for a numerical approximation to the compressible barotropic Navier-Stokes equations , 2015, 1504.02890.

[26]  Antonín Novotný,et al.  Introduction to the mathematical theory of compressible flow , 2004 .

[27]  R. Eymard,et al.  Discretisation of heterogeneous and anisotropic diffusion problems on general non-conforming meshes. SUSHI: a scheme using stabilisation and hybrid interfaces , 2008, 0801.1430.

[28]  P. Wesseling,et al.  A conservative pressure-correction method for flow at all speeds , 2003 .

[29]  Thierry Gallouët,et al.  Convergence of the MAC Scheme for the Compressible Stokes Equations , 2010, SIAM J. Numer. Anal..

[30]  E. Feireisl,et al.  Singular Limits in Thermodynamics of Viscous Fluids , 2009 .

[31]  R. Eymard,et al.  Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes , 1998 .

[32]  H. Schwandt,et al.  Interval arithmetic methods for systems of nonlinear equations arising from discretizations of quasilinear elliptic and parabolic partial differential equations , 1987 .

[33]  Antonín Novotný,et al.  On the existence of weak solutions to the steady compressible Navier-Stokes equations when the density is not square integrable , 2002 .

[34]  Hester Bijl,et al.  A Unified Method for Computing Incompressible and Compressible Flows in Boundary-Fitted Coordinates , 1998 .

[35]  K. Deimling Nonlinear functional analysis , 1985 .

[36]  Donald Greenspan,et al.  Pressure method for the numerical solution of transient, compressible fluid flows , 1984 .

[37]  S. Patankar,et al.  Pressure based calculation procedure for viscous flows at all speeds in arbitrary configurations , 1988 .