Unsupervised classification of radar images based on hidden Markov models and generalized mixture estimation

Due to the enormous quantity of radar images acquired by satellites and through shuttle missions, there is an evident need for efficient automatic analysis tools. This article describes unsupervised classification of radar images in the framework of hidden Markov models and generalised mixture estimation. In particular, we show that hidden Markov chains, based on a Hilbert-Peano scan of the radar image, are a fast and efficient alternative to hidden Markov random fields for parameter estimation and unsupervised classification. We also describe how the distribution families and parameters of classes with homogeneous or textured radar reflectivity can be determined through generalised mixture estimation. Sample results obtained on real and simulated radar images are presented.

[1]  R. Garello,et al.  Statistical modelling of ocean SAR images , 1997 .

[2]  Wladyslaw Skarbek,et al.  Generalized Hilbert scan in image printing , 1992, Theoretical Foundations of Computer Vision.

[3]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[4]  G. Celeux,et al.  L'algorithme SEM: un algorithme d'apprentissage probabiliste: pour la reconnaissance de mélange de densités , 1986 .

[5]  Abdelwaheb Marzouki,et al.  Estimation of generalized mixtures and its application in image segmentation , 1997, IEEE Trans. Image Process..

[6]  Devijver,et al.  1 - Champs aléatoires de Pickard et modélisation d'images digitales , 1988 .

[7]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Tomaso Poggio,et al.  Probabilistic Solution of Ill-Posed Problems in Computational Vision , 1987 .

[9]  W. Pieczynski,et al.  3 - Estimation des paramètres dans les chaînes de Markov cachées et segmentation d'images , 1995 .

[10]  Laveen N. Kanal,et al.  Classification of binary random patterns , 1965, IEEE Trans. Inf. Theory.

[11]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[12]  Wojciech Pieczynski,et al.  Estimation of Generalized Multisensor Hidden Markov Chains and Unsupervised Image Segmentation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  W. Pieczynsky 4 - Champs de Markov cachés et estimation conditionnelle itérative , 1994 .

[14]  L. Baum,et al.  A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains , 1970 .