Preliminary experimental study of SMA knitted actuation architectures

Nature builds an immense set of materials exhibiting a wide range of behaviors using only a small number of basic compounds. The range of materials comes about through architecture, giving functional structure to the basic materials. Analogously, a new genre of actuators can be derived from existing smart materials through architecture. This paper presents a preliminary experimental study of knitted actuation architectures that yield high strains (up to 73%) with moderate forces (tens of Newtons or more) from basic contracting smart material fibers. By different combinations of the two primary knit loops – purl and knit – a variety of behaviors can be achieved including contraction, rolling, spirals, accordions, arching, and any combination of these across the fabric. This paper catalogs several basic knit stitches and their actuated form: garter, stockinette, seed, rib and I-cord. These knitted architectures provide performance tailorability (force, strain, stiffness, and motion) by manipulation of key design parameters such as the material properties of the wire, the geometric parameters (wire diameter, loop size, and gauge), and architectural parameters (stitch type and orientation). This is demonstrated via a quasi-static force-deflection experimental study with several shape memory alloy garter prototypes with varying geometric parameters. While the basic architecture of a knit is simple, it affords a vast array of architectural combinations and control of geometrical and material parameters that generate a myriad of gross motion capabilities beyond that of current day actuation strategies.Copyright © 2006 by ASME

[1]  Stewart Sherrit,et al.  Characterization of the electromechanical properties of EAP materials , 2000, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[2]  Helmut W. Zaglauer,et al.  Qualification of smart composites for use in aerospace applications , 1997, Smart Structures.

[3]  Dimitris C. Lagoudas,et al.  Transformation of Embedded Shape Memory Alloy Ribbons , 1998 .

[4]  George K Stylios,et al.  Designing knitted apparel by engineering the attributes of shape memory alloy , 2003 .

[5]  Binbin Xi,et al.  Electroactive polymer actuator devices (EAPAD) , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[6]  Gregory P. Carman,et al.  Design and Testing of a Mesoscale Piezoelectric Inchworm Actuator with Microridges , 2000 .

[7]  Minoru Taya,et al.  Design of diaphragm actuator based on ferromagnetic shape memory alloy composite , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[8]  Sunil Kumar Agrawal,et al.  Modeling and Shape Control of Piezoelectric Actuator Embedded Elastic Plates , 1994 .

[9]  Gene H. Haertling,et al.  Rainbow Ceramics-A New Type of Ultra-High-Displacement Actuator , 1994 .

[10]  J. Ro,et al.  Shape control of NITINOL-reinforced composite beams☆ , 2000 .

[11]  John A. Shaw,et al.  Superelastic NiTi honeycombs: fabrication and experiments , 2007 .

[12]  John A. Shaw,et al.  The Manufacture of NiTi Foams , 2002 .

[13]  Fabrizio Scarpa,et al.  Shape memory alloys honeycomb: design and properties , 2004, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[14]  J. D. Ervin,et al.  Recurve piezoelectric-strain-amplifying actuator architecture , 1998 .

[15]  Diann Brei,et al.  Parametric Investigation of the Deflection Performance of Serial Piezoelectric C-Block Actuators , 1998 .

[16]  D. M. Elzey,et al.  A bio-inspired high-authority actuator for shape morphing structures , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[17]  J. N. Reddy,et al.  Active control of laminated cylindrical shells using piezoelectric fiber reinforced composites , 2005 .

[18]  S. Hall,et al.  Design of a high efficiency, large stroke, electromechanical actuator , 1999 .

[19]  Nancy R. Sottos,et al.  Consideration of electro-mechanical coupling in the prediction of 1-3 piezocomposite properties , 1994 .

[20]  F. Boussu,et al.  8 – Development of shape memory alloy fabrics for composite structures , 2006 .

[21]  S. Hall,et al.  Development of a piezoelectric servoflap for helicopter rotor control , 1996 .

[22]  Nancy R. Sottos,et al.  Influence of adhesion on micromechanical behavior of SMA composites , 1995, Smart Structures.

[23]  I. Chopra,et al.  Induced strain actuation of composite beams and rotor blades with embedded piezoceramic elements , 1996 .

[24]  Diann Brei,et al.  Dynamic Behavior of Telescopic Actuators , 2003 .

[25]  Friedrich K. Straub,et al.  Design and testing of a double X-frame piezoelectric actuator , 2000, Smart Structures.

[26]  Brian J. Cannon,et al.  Piezoceramic hollow fiber active composites , 2004 .

[27]  V. D. Kugel,et al.  Comparative analysis of piezoelectric bending-mode actuators , 1997, Smart Structures.

[28]  Dimitris C. Lagoudas,et al.  Analysis of phase transformation fronts in SMA composites , 1996, Smart Structures.

[29]  A. Dogan,et al.  Metal-Ceramic Composite Transducer, the "Moonie" , 1995 .

[30]  Minoru Taya,et al.  Martensitic transformation behavior under magnetic field in Co-Ni-Al ferromagnetic shape memory alloys , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[31]  Robert E. Newnham,et al.  Hollow piezoelectric composites , 1995 .

[32]  Gursel Alici,et al.  Predicting force output of trilayer polymer actuators , 2006 .

[33]  Minoru Taya,et al.  Design of spring actuators made of ferromagnetic shape memory alloy and composites , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[34]  Gursel Alici,et al.  A finite element model for bending behaviour of conducting polymer electromechanical actuators , 2006 .

[35]  Luis Moreno,et al.  A bio-inspired EAP actuator design methodology , 2005, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[36]  Minoru Taya,et al.  Design of torque actuator based on ferromagnetic shape memory alloy composite , 2004, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[37]  Ephrahim Garcia,et al.  A piezoelectric-driven inchworm locomotion device , 2001 .

[38]  Chin-Po Kuo,et al.  Long stroke precision PZT actuator , 1995 .

[39]  N. Hagood,et al.  Anisotropic Actuation with Piezoelectric Fiber Composites , 1995 .

[40]  G. Haertling,et al.  Temperature dependent characteristics of Cerambow actuators , 1996, ISAF '96. Proceedings of the Tenth IEEE International Symposium on Applications of Ferroelectrics.

[41]  Kazuhiro Abe,et al.  Shape memory alloy actuators and their reliability , 2001, SPIE Micro + Nano Materials, Devices, and Applications.

[42]  Diann Brei,et al.  Piezoceramic hollow fiber active composites , 2002 .

[43]  Amr M. Baz,et al.  Active control of the lateral buckling of nitinol-reinforced composite beams , 1995, Other Conferences.

[44]  George K Stylios,et al.  An overview of smart technologies for clothing design and engineering , 2006 .

[45]  Diann Brei,et al.  Feasibility Study of Microfabrication by Coextrusion (MFCX) Hollow Fibers for Active Composites , 2000 .

[46]  John A. Shaw,et al.  Low-density open-cell foams in the NiTi system , 2003 .

[47]  Yoseph Bar-Cohen,et al.  Electroactive polymers: current capabilities and challenges , 2002, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[48]  K. Uchino,et al.  The "cymbal" electromechanical actuator , 1996, ISAF '96. Proceedings of the Tenth IEEE International Symposium on Applications of Ferroelectrics.

[49]  Leslie E. Cross,et al.  CRESCENT: a novel piezoelectric bending actuator , 1997, Smart Structures.

[50]  L. E. Cross,et al.  Piezoelectric tubes and tubular composites for actuator and sensor applications , 1993, Journal of Materials Science.

[51]  D. Stoeckel,et al.  A survey of stent designs , 2002, Minimally invasive therapy & allied technologies : MITAT : official journal of the Society for Minimally Invasive Therapy.