A Divergence-Conforming Hybridized Discontinuous Galerkin Method for the Incompressible Magnetohydrodynamics Equations

We introduce a new hybridized discontinuous Galerkin method for the incompressible magnetohydrodynamics equations. If particular velocity, pressure, magnetic field, and magnetic pressure spaces are employed for both element and trace solution fields, we arrive at an energy stable method which returns pointwise divergence-free velocity fields and magnetic fields and properly balances linear momentum. We discretize in time using a second-order-in-time generalized-α method, and we present a block iterative method for solving the resulting nonlinear system of equations at each time step. We numerically examine the effectiveness of our method using a manufactured solution and observe our method yields optimal convergence rates in the L2 norm for the velocity field, pressure field, magnetic field, and magnetic pressure field. We further find our method is pressure robust. We then apply our method to a selection of benchmark problems and numerically confirm our method is energy stable.

[1]  Arne Taube,et al.  Arbitrary High-Order Discontinuous Galerkin Schemes for the Magnetohydrodynamic Equations , 2007, J. Sci. Comput..

[2]  - Silva Stabilized finite element approximation of the stationary magnetohydrodynamics equations , 2019 .

[3]  P. Roe,et al.  A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics , 1999 .

[4]  Miguel Cervera,et al.  On the computational efficiency and implementation of block-iterative algorithms for nonlinear coupled Problems , 1996 .

[5]  Michel Fortin,et al.  A conservative stabilized finite element method for the magneto-hydrodynamic equations , 1999 .

[6]  Alexandre Ern,et al.  Continuous interior penalty hp-finite element methods for advection and advection-diffusion equations , 2007, Math. Comput..

[7]  Volker John,et al.  On the Divergence Constraint in Mixed Finite Element Methods for Incompressible Flows , 2015, SIAM Rev..

[8]  G. Hulbert,et al.  A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method , 2000 .

[9]  Raytcho D. Lazarov,et al.  Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..

[10]  Sergey Yakovlev,et al.  Central discontinuous Galerkin methods for ideal MHD equations with the exactly divergence-free magnetic field , 2011, J. Comput. Phys..

[11]  John N. Shadid,et al.  A linearity preserving nodal variation limiting algorithm for continuous Galerkin discretization of ideal MHD equations , 2020, J. Comput. Phys..

[12]  Robert Michael Kirby,et al.  To CG or to HDG: A Comparative Study , 2012, J. Sci. Comput..

[13]  Francisco L. Tabarés,et al.  Present status of liquid metal research for a fusion reactor , 2015 .

[14]  John N. Shadid,et al.  A New Approximate Block Factorization Preconditioner for Two-Dimensional Incompressible (Reduced) Resistive MHD , 2013, SIAM J. Sci. Comput..

[15]  John N. Shadid,et al.  Analysis of an HDG Method for Linearized Incompressible Resistive MHD Equations , 2017, SIAM J. Numer. Anal..

[16]  Christoph Lehrenfeld,et al.  Towards computable flows and robust estimates for inf-sup stable FEM applied to the time-dependent incompressible Navier–Stokes equations , 2017, SeMA Journal.

[17]  Bernardo Cockburn,et al.  An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations , 2009, Journal of Computational Physics.

[18]  James A. Rossmanith,et al.  An Unstaggered, High-Resolution Constrained Transport Method for Magnetohydrodynamic Flows , 2006, SIAM J. Sci. Comput..

[19]  Alexander Linke,et al.  Pressure-robustness and discrete Helmholtz projectors in mixed finite element methods for the incompressible Navier--Stokes equations , 2016 .

[20]  Sergey Yakovlev,et al.  Locally divergence-free central discontinuous Galerkin methods for ideal MHD equations , 2013, J. Comput. Sci..

[21]  A. Christophe,et al.  Implicit hybridized discontinuous Galerkin methods for compressible magnetohydrodynamics , 2020, J. Comput. Phys. X.

[22]  H. R. Strauss,et al.  Nonlinear, three‐dimensional magnetohydrodynamics of noncircular tokamaks , 1976 .

[23]  D. Balsara,et al.  A Staggered Mesh Algorithm Using High Order Godunov Fluxes to Ensure Solenoidal Magnetic Fields in Magnetohydrodynamic Simulations , 1999 .

[24]  Bernardo Cockburn,et al.  A Hybridizable Discontinuous Galerkin Method for the Compressible Euler and Navier-Stokes Equations , 2010, 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition.

[25]  Thomas J. R. Hughes,et al.  Isogeometric divergence-conforming B-splines for the unsteady Navier-Stokes equations , 2013, J. Comput. Phys..

[26]  John N. Shadid,et al.  Scalable implicit incompressible resistive MHD with stabilized FE and fully-coupled Newton–Krylov-AMG , 2016 .

[27]  J. Brackbill,et al.  The Effect of Nonzero ∇ · B on the numerical solution of the magnetohydrodynamic equations☆ , 1980 .

[28]  John A. Evans,et al.  A divergence‐conforming hybridized discontinuous Galerkin method for the incompressible Reynolds‐averaged Navier‐Stokes equations , 2019, International Journal for Numerical Methods in Fluids.

[29]  Sander Rhebergen,et al.  Preconditioning of a Hybridized Discontinuous Galerkin Finite Element Method for the Stokes Equations , 2018, J. Sci. Comput..

[30]  W. Habashi,et al.  A finite element method for magnetohydrodynamics , 2001 .

[31]  Paul Houston,et al.  A Mixed DG Method for Linearized Incompressible Magnetohydrodynamics , 2009, J. Sci. Comput..

[32]  C. Munz,et al.  Hyperbolic divergence cleaning for the MHD equations , 2002 .

[33]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[34]  Herbert Egger,et al.  A hybrid mixed discontinuous Galerkin finite-element method for convection–diffusion problems , 2010 .

[35]  Gregor Gassner,et al.  Ideal GLM-MHD: About the entropy consistent nine-wave magnetic field divergence diminishing ideal magnetohydrodynamics equations , 2017, J. Comput. Phys..

[36]  Weifeng Qiu,et al.  A mixed DG method and an HDG method for incompressible magnetohydrodynamics , 2017, IMA Journal of Numerical Analysis.

[37]  Sander Rhebergen,et al.  A Hybridizable Discontinuous Galerkin Method for the Navier–Stokes Equations with Pointwise Divergence-Free Velocity Field , 2017, Journal of Scientific Computing.

[38]  Thomas J. R. Hughes,et al.  Explicit trace inequalities for isogeometric analysis and parametric hexahedral finite elements , 2013, Numerische Mathematik.

[39]  Paul T. Lin,et al.  Towards a scalable fully-implicit fully-coupled resistive MHD formulation with stabilized FE methods , 2009, J. Comput. Phys..

[40]  Chi-Wang Shu,et al.  Locally Divergence-Free Discontinuous Galerkin Methods for MHD Equations , 2005, J. Sci. Comput..

[41]  J. Hesthaven,et al.  On the constants in hp-finite element trace inverse inequalities , 2003 .

[42]  Guosheng Fu,et al.  An Explicit Divergence-Free DG Method for Incompressible Magnetohydrodynamics , 2018, Journal of Scientific Computing.

[43]  Sander Rhebergen,et al.  An embedded-hybridized discontinuous Galerkin finite element method for the Stokes equations , 2018, Computer Methods in Applied Mechanics and Engineering.

[44]  P. Londrillo,et al.  High-Order Upwind Schemes for Multidimensional Magnetohydrodynamics , 1999, astro-ph/9910086.

[45]  Alison L. Marsden,et al.  A note on the accuracy of the generalized‐ α scheme for the incompressible Navier‐Stokes equations , 2020, International Journal for Numerical Methods in Engineering.

[46]  Bo Dong,et al.  A Hybridizable Discontinuous Galerkin Method for Steady-State Convection-Diffusion-Reaction Problems , 2009, SIAM J. Sci. Comput..