Ultra-high-frequency chaos in a time-delay electronic device with band-limited feedback.

We report an experimental study of ultra-high-frequency chaotic dynamics generated in a delay-dynamical electronic device. It consists of a transistor-based nonlinearity, commercially-available amplifiers, and a transmission-line for feedback. The feedback is band-limited, allowing tuning of the characteristic time-scales of both the periodic and high-dimensional chaotic oscillations that can be generated with the device. As an example, periodic oscillations ranging from 48 to 913 MHz are demonstrated. We develop a model and use it to compare the experimentally observed Hopf bifurcation of the steady-state to existing theory [Illing and Gauthier, Physica D 210, 180 (2005)]. We find good quantitative agreement of the predicted and the measured bifurcation threshold, bifurcation type and oscillation frequency. Numerical integration of the model yields quasiperiodic and high dimensional chaotic solutions (Lyapunov dimension approximately 13), which match qualitatively the observed device dynamics.

[1]  J. Gleeson,et al.  Truly random number generator based on turbulent electroconvection , 2002 .

[2]  L. Kocarev,et al.  Chaos-based random number generators. Part II: practical realization , 2001 .

[3]  M. B. Kennel,et al.  Synchronization and communication using semiconductor lasers with optoelectronic feedback , 2001 .

[4]  T Carroll,et al.  Nonlinear dynamics in circuits , 1995 .

[5]  Laurent Larger,et al.  Electro-optical chaos for multi-10 Gbit/s optical transmissions , 2004 .

[6]  K. Ikeda,et al.  Successive Higher-Harmonic Bifurcations in Systems with Delayed Feedback , 1982 .

[7]  Fan-Yi Lin,et al.  Ambiguity functions of laser-based chaotic radar , 2004 .

[8]  Ragnar Frisch,et al.  The Characteristic Solutions of a Mixed Difference and Differential Equation Occuring in Economic Dynamics , 1935 .

[9]  Patrick Celka,et al.  Delay-differential equation versus 1D-map: application to chaos control , 1997 .

[10]  Edward Ott,et al.  Communication with a chaotic traveling wave tube microwave generator. , 2004, Chaos.

[11]  A. Tamasevicius,et al.  Very high and ultrahigh frequency hyperchaotic oscillators with delay line , 2003 .

[12]  Roy,et al.  Communication with chaotic lasers , 1998, Science.

[13]  G. E. Hutchinson,et al.  CIRCULAR CAUSAL SYSTEMS IN ECOLOGY , 1948, Annals of the New York Academy of Sciences.

[14]  J. D. Farmer,et al.  Chaotic attractors of an infinite-dimensional dynamical system , 1982 .

[15]  G. Arfken Mathematical Methods for Physicists , 1967 .

[16]  Jia-Ming Liu,et al.  Chaotic radar using nonlinear laser dynamics , 2004, IEEE Journal of Quantum Electronics.

[17]  James P. Keener,et al.  Mathematical physiology , 1998 .

[18]  Ned J Corron,et al.  Experimental observation of delay-induced radio frequency chaos in a transmission line oscillator. , 2004, Chaos.

[19]  Ingo Fischer,et al.  Synchronization of chaotic semiconductor laser dynamics on subnanosecond time scales and its potential for chaos communication , 2000 .

[20]  Laurent Larger,et al.  Chaos-based communications at high bit rates using commercial fibre-optic links , 2005, Nature.

[21]  W. T. Rhodes,et al.  Bandpass chaotic dynamics of electronic oscillator operating with delayed nonlinear feedback , 2002 .

[22]  Andrea Gerosa,et al.  A fully integrated chaotic system for the generation of truly random numbers , 2002 .

[23]  Jonathan N. Blakely,et al.  Simply folded band chaos in a VHF microstrip oscillator [rapid communication] , 2005 .

[24]  S. Pethel,et al.  High-precision ranging using a chaotic laser pulse train , 2001 .

[25]  Junji Ohtsubo,et al.  1.5-GHz message transmission based on synchronization of chaos in semiconductor lasers. , 2002, Optics letters.

[26]  L. Reichl,et al.  An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos By Irving R. Epstein (Brandeis University) and John A. Pojman (University of S. Mississippi). Oxford University Press: New York. 1998. 408 pp. $75.00. ISBN 0-19-509670-3. , 2000 .

[27]  R. Quéré,et al.  RF-Interferences Generate Chaotic GHz FM—Carrier for Communications , 2007, IEEE Journal of Quantum Electronics.

[28]  Daniel J. Gauthier,et al.  Hopf bifurcations in time-delay systems with band-limited feedback , 2005 .

[29]  A. Tamasevicius,et al.  Experimental demonstration of chaos from Colpitts oscillator in VHF and UHF ranges , 2004 .

[30]  G. Stépán Retarded dynamical systems : stability and characteristic functions , 1989 .

[31]  D. Gauthier,et al.  High-speed chaos in an optical feedback system with flexible timescales , 2003, IEEE Journal of Quantum Electronics.

[32]  Irving R. Epstein,et al.  An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos , 1998 .