On the Existence of Similar Sublattices
暂无分享,去创建一个
[1] G. Watson,et al. Integral Quadratic Forms , 1960 .
[2] N. J. A. Sloane,et al. Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.
[3] Neil J. A. Sloane,et al. Low-dimensional lattices. I. Quadratic forms of small determinant , 1988, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[4] W. Fischer,et al. Sphere Packings, Lattices and Groups , 1990 .
[5] Neil J. A. Sloane,et al. Low-dimensional lattices. VI. Voronoi reduction of three-dimensional lattices , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[6] Shrinking integer lattices II , 1992 .
[7] N. J. A. Sloane,et al. The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..
[8] Robin J. Chapman,et al. Shrinking integer lattices , 1995, Discret. Math..
[9] Algebraic Solution of the Coincidence Problem in Two and Three Dimensions , 1995 .
[10] Michael Baake,et al. Planar coincidences for N‐fold symmetry , 1996 .
[11] Robert V. Moody,et al. The Mathematics of Long-Range Aperiodic Order , 1997 .
[12] Thomas C. Hales. Sphere packings, I , 1997, Discret. Comput. Geom..
[13] Similarity submodules and semigroups , 1998 .
[14] Michael Baake,et al. Similarity submodules and root systems in four dimensions , 1999 .
[15] N. J. A. Sloane,et al. Multiple-description vector quantization with lattice codebooks: Design and analysis , 2001, IEEE Trans. Inf. Theory.