On the Existence of Similar Sublattices

Abstract Partial answers are given to two questions. When does a lattice $\Lambda $ contain a sublattice ${\Lambda }'$ of index $N$ that is geometrically similar to $\Lambda $ ? When is the sublattice “clean”, in the sense that the boundaries of the Voronoi cells for ${\Lambda }'$ do not intersect $\Lambda $ ?

[1]  G. Watson,et al.  Integral Quadratic Forms , 1960 .

[2]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[3]  Neil J. A. Sloane,et al.  Low-dimensional lattices. I. Quadratic forms of small determinant , 1988, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[4]  W. Fischer,et al.  Sphere Packings, Lattices and Groups , 1990 .

[5]  Neil J. A. Sloane,et al.  Low-dimensional lattices. VI. Voronoi reduction of three-dimensional lattices , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[6]  Shrinking integer lattices II , 1992 .

[7]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[8]  Robin J. Chapman,et al.  Shrinking integer lattices , 1995, Discret. Math..

[9]  Algebraic Solution of the Coincidence Problem in Two and Three Dimensions , 1995 .

[10]  Michael Baake,et al.  Planar coincidences for N‐fold symmetry , 1996 .

[11]  Robert V. Moody,et al.  The Mathematics of Long-Range Aperiodic Order , 1997 .

[12]  Thomas C. Hales Sphere packings, I , 1997, Discret. Comput. Geom..

[13]  Similarity submodules and semigroups , 1998 .

[14]  Michael Baake,et al.  Similarity submodules and root systems in four dimensions , 1999 .

[15]  N. J. A. Sloane,et al.  Multiple-description vector quantization with lattice codebooks: Design and analysis , 2001, IEEE Trans. Inf. Theory.