Equivalence and Bifurcations of Finite Order Stochastic Processes

This article presents an equivalence notion of finite order stochastic processes. Local dependence measures are defined in terms of joint and marginal densities. The dependence measures are classified topologically using level sets. The corresponding bifurcation theory is illustrated with some simple examples.

[1]  J. Rogers Chaos , 1876, Molecular Vibrations.

[2]  J. C. Oxtoby,et al.  Measure and Category: A Survey of the Analogies between Topological and Measure Spaces , 1971 .

[3]  R. Thom Structural stability and morphogenesis , 1977, Pattern Recognition.

[4]  Loren Cobb,et al.  Stochastic catastrophe models and multimodal distributions , 1978 .

[5]  Ian Abramson On Bandwidth Variation in Kernel Estimates-A Square Root Law , 1982 .

[6]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[7]  B. Dubrovin,et al.  Modern geometry--methods and applications , 1984 .

[8]  P. Holland,et al.  Dependence function for continuous bivariate densities , 1987 .

[9]  E. C. Zeeman,et al.  Stability of dynamical systems , 1988 .

[10]  René Thom,et al.  Structural stability and morphogenesis - an outline of a general theory of models , 1977, Advanced book classics.

[11]  D. W. Scott,et al.  Variable Kernel Density Estimation , 1992 .

[12]  M. C. Jones The local dependence function , 1996 .

[13]  M. Mackey,et al.  Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics , 1998 .

[14]  Exponential Growth of Fixed-Mix Strategies in Stationary Asset Markets , 2002 .

[15]  B. Dundas,et al.  DIFFERENTIAL TOPOLOGY , 2002 .

[16]  Annemie Ploeger,et al.  Stochastic catastrophe analysis of switches in the perception of apparent motion , 2002, Psychonomic bulletin & review.

[17]  L. Arnold Random Dynamical Systems , 2003 .

[18]  S. Nadarajah,et al.  Local dependence functions for extreme value distributions , 2003 .

[19]  Klaus Reiner Schenk-Hoppé,et al.  Exponential growth of fixed-mix strategies in stationary asset markets , 2002, Finance Stochastics.