Coarse quantization for random interleaved sampling of bandlimited signals
暂无分享,去创建一个
Jared Tanner | Alexander M. Powell | Ozgur Yilmaz | Yang Wang | A. Powell | O. Yilmaz | Yang Wang | Jared Tanner
[1] I. Daubechies,et al. Approximating a bandlimited function using very coarsely quantized data: A family of stable sigma-delta modulators of arbitrary order , 2003 .
[2] Håkan Johansson,et al. Time-interleaved analog-to-digital converters: status and future directions , 2006, 2006 IEEE International Symposium on Circuits and Systems.
[3] E. Slud. Entropy and maximal spacings for random partitions , 1978 .
[4] A. Zayed. Advances in Shannon's Sampling Theory , 1993 .
[5] Ozgur Yilmaz,et al. Coarse quantization of highly redundant time–frequency representations of square-integrable functions , 2003 .
[6] Gerhard Schmeisser,et al. A Bandlimited Function Simulating a Duration-Limited One , 1984 .
[7] Herbert A. David,et al. Order Statistics, Third Edition , 2003, Wiley Series in Probability and Statistics.
[8] C. S. Gunturk,et al. Approximating a bandlimited function using very coarsely quantized data: Improved error estimates in sigma-delta modulation , 2003 .
[9] L. Devroye. Laws of the Iterated Logarithm for Order Statistics of Uniform Spacings , 1981 .
[10] H. N. Nagaraja,et al. Order Statistics, Third Edition , 2005, Wiley Series in Probability and Statistics.
[11] John J. Benedetto,et al. Sigma-delta quantization and finite frames , 2004, ICASSP.
[12] Jared Tanner,et al. Fast Reconstruction Methods for Bandlimited Functions from Periodic Nonuniform Sampling , 2006, SIAM J. Numer. Anal..
[13] J. Benedetto,et al. Sigma-delta (/spl Sigma//spl Delta/) quantization and finite frames , 2006, IEEE Transactions on Information Theory.
[14] Thomas Strohmer,et al. Efficient Calibration of Time-Interleaved ADCs via Separable Nonlinear Least Squares , .
[15] Frank Natterer. Efficient evaluation of oversampled functions , 1986 .
[16] Herbert A. David,et al. Order Statistics , 2011, International Encyclopedia of Statistical Science.
[17] Ññøøøññøø Blockin. Random Sampling of Multivariate Trigonometric Polynomials , 2004 .
[18] Holger Rauhut,et al. Random Sampling of Sparse Trigonometric Polynomials, II. Orthogonal Matching Pursuit versus Basis Pursuit , 2008, Found. Comput. Math..
[19] Jared Tanner,et al. Implementations of Shannon's sampling theorem, a time-frequency approach , 2005 .
[20] Stephen P. Huestis. Optimum kernels for oversampled signals , 1992 .