Heuristic thinking makes a chemist smart.

We focus on the virtually neglected use of heuristic principles in understanding and teaching of organic chemistry. As human thinking is not comparable to computer systems employing factual knowledge and algorithms--people rarely make decisions through careful considerations of every possible event and its probability, risks or usefulness--research in science and teaching must include psychological aspects of the human decision making processes. Intuitive analogical and associative reasoning and the ability to categorize unexpected findings typically demonstrated by experienced chemists should be made accessible to young learners through heuristic concepts. The psychology of cognition defines heuristics as strategies that guide human problem-solving and deciding procedures, for example with patterns, analogies, or prototypes. Since research in the field of artificial intelligence and current studies in the psychology of cognition have provided evidence for the usefulness of heuristics in discovery, the status of heuristics has grown into something useful and teachable. In this tutorial review, we present a heuristic analysis of a familiar fundamental process in organic chemistry--the cyclic six-electron case, and we show that this approach leads to a more conceptual insight in understanding, as well as in teaching and learning.

[1]  J. Brent Friesen,et al.  Saying what you mean: Teaching mechanisms in organic chemistry , 2008 .

[2]  Robert G. Bergman,et al.  p-Benzyne. Generation as an intermediate in a thermal isomerization reaction and trapping evidence for the 1,4-benzenediyl structure , 1972 .

[3]  H. Schmid,et al.  Über den Mechanismus der Cope‐Umlagerung , 1977 .

[4]  P. Schreiner,et al.  Aromaticity of the Bergman, Myers-Saito, Schmittel, and directly related cyclizations of enediynes. , 2002, The Journal of organic chemistry.

[5]  Atocha Aliseda,et al.  Logics in Scientific Discovery , 2004 .

[6]  R. Hoffmann Orbital Symmetries and Orientational Effects in a Sigmatropic Reaction (福井謙一とフロンティア軌導理論) -- (参考論文) , 1965 .

[7]  J. A. Berson,et al.  Discoveries missed, discoveries made: creativity, influence, and fame in chemistry , 1992 .

[8]  Robert Ponec,et al.  Similarity ideas in the theory of pericyclic reactivity , 1992, J. Chem. Inf. Comput. Sci..

[9]  Michael Schmittel,et al.  A Surprising Switch from the Myers–Saito Cyclization to a Novel Biradical Cyclization in Enyne–Allenes: Formal Diels–Alder and Ene Reactions with High Synthetic Potential† , 1997 .

[10]  Kendall N. Houk,et al.  Quantum Mechanical Methods and the Interpretation and Prediction of Pericyclic Reaction Mechanisms , 1997 .

[11]  A. Navarro‐Vázquez,et al.  Computational studies on the cyclizations of enediynes, enyne-allenes, and related polyunsaturated systems. , 2005, Accounts of chemical research.

[12]  Kendall N. Houk,et al.  Synchronicity in Multibond Reactions , 1988 .

[13]  R. Pozzo,et al.  Enzyklopädie Philosophie und Wissenschaftstheorie. 2. neubearbeitete und wesentlich ergänzte Auflage, ed. Jürgen Mittelstraß and Martin Carrier, 8 vols. (Stuttgart-Weimar: Metzler, 2005-2011) , 2008 .

[14]  Andrew G. Myers,et al.  Studies on the thermal generation and reactivity of a class of (.sigma.,.pi.)-1,4-biradicals , 1992 .

[15]  K. Houk,et al.  Alkynes, Allenes, and Alkenes in [3,3]-Sigmatropy: Functional Diversity and Kinetic Monotony. A Theoretical Analysis , 1998 .

[16]  Tami Levy Nahum,et al.  A New "Bottom-Up" Framework for Teaching Chemical Bonding , 2008 .

[17]  M. Dewar,et al.  A study of the mechanism of the Cope rearrangement , 1977 .

[18]  H. Mayr,et al.  The reactivity-selectivity principle: an imperishable myth in organic chemistry. , 2006, Angewandte Chemie.

[19]  Charles J. Pedersen,et al.  Cyclic polyethers and their complexes with metal salts , 1967 .

[20]  A. Tversky,et al.  Judgment under Uncertainty: Heuristics and Biases , 1974, Science.

[21]  Carina Horn,et al.  1,3,5-Cyclohexatrien-1,4-diyl und 2,4-Cyclohexadien-1,4-diyl , 1994 .

[22]  H. Simon,et al.  Scientific discovery as problem solving , 1981, Synthese.

[23]  M. G. Evans,et al.  The activation energy of diene association reactions , 1938 .

[24]  I. Saito,et al.  Biradical formation from acyclic conjugated eneyne-allene system related to neocarzinostatin and esperamicin-calichemicin , 1989 .

[25]  James B. Hendrickson,et al.  The Variety of Thermal Pericyclic Reactions , 1974 .

[26]  K. Fukui Stereospecificity with reference to some cyclic reactions , 1965 .

[27]  A. Navarro‐Vázquez,et al.  Cope reaction families: to be or not to be a biradical. , 2004, Organic letters.

[28]  P. Schreiner,et al.  Moore Cyclizations: Rearrangements of 3‐Heteroatom‐pent‐1‐en‐4‐yn‐1‐ones – A Computational Search for New Reactions , 2006 .

[29]  Rainer Herges Reaction planning: prediction of new organic reactions , 1990, J. Chem. Inf. Comput. Sci..

[30]  P. Todd,et al.  Simple Heuristics That Make Us Smart , 1999 .

[31]  Mary B. Nakhleh,et al.  Narrowing the Gap between Concepts and Algorithms in Freshman Chemistry , 1996 .

[32]  R. Hoffmann,et al.  Darstellungen in der Chemie — die Sprache der Chemiker , 1991 .

[33]  Kendall N. Houk,et al.  Pericyclic Reaction Transition States: Passions and Punctilios, 1935-1995 , 1995 .

[34]  Scott E. Lewis,et al.  Alternative conceptions of organic chemistry topics among fourth year chemistry students , 2008 .

[35]  P. Schreiner,et al.  Cycloaromatization of 1,4-pentadiynes: a viable possibility? , 2002, Organic letters.

[36]  R. Hoffmann,et al.  Learning from molecules in distress. , 2008, Angewandte Chemie.

[37]  Siegfried Blasche,et al.  Enzyklopädie Philosophie und Wissenschaftstheorie , 1995 .

[38]  J. J. Collins,et al.  Intramolecular pericyclic reactions of acetylenic compounds , 1981 .

[39]  Aug. Kekuié Untersuchungen über aromatische Verbindungen Ueber die Constitution der aromatischen Verbindungen. I. Ueber die Constitution der aromatischen Verbindungen. , 1866 .

[40]  René Descartes,et al.  Regeln zur Ausrichtung der Erkenntniskraft , 1972 .

[41]  P. Schreiner,et al.  Beyond Schmittel and Myers-Saito cyclizations: rearrangements of 4-heteroatom-1,2-hexa-diene-5-ynes. , 2003, Organic letters.

[42]  P. Schreiner,et al.  The cyclization of parent and cyclic hexa-1,3-dien-5-ynes--a combined theoretical and experimental study. , 2001, Chemistry.

[43]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[44]  P. Schreiner,et al.  Thermal Rearrangements of Heteroatom‐Bridged Diallenes , 2006 .

[45]  Brian Hand,et al.  Implementing the Science Writing Heuristic in the Chemistry Laboratory. , 2006 .

[46]  H. Reichenbach Experience and Prediction. An Analysis of the Foundations and the Structure of Knowledge , 1938 .