Constacyclic codes of length 2ps over Fpm+uFpm

The aim of this paper is to determine the algebraic structures of all λ-constacyclic codes of length 2 p s over the finite commutative chain ring F p m + u F p m , where p is an odd prime and u 2 = 0 . For this purpose, the situation of λ is mainly divided into two cases separately. If the unit λ is not a square and λ = α + u β for nonzero elements α , β of F p m , it is shown that the ambient ring ( F p m + u F p m ) x / { x 2 p s - ( α + u β ) } is a chain ring with the unique maximal ideal { x 2 - α 0 } , and thus ( α + u β ) -constacyclic codes are { ( x 2 - α 0 ) i } for 0 ? i ? 2 p s . If the unit λ is not a square and λ = γ for some nonzero element γ of F p m , such λ-constacyclic codes are classified into 4 distinct types of ideals. The detailed structures of ideals in each type are provided. Among other results, the number of codewords and the dual of every λ-constacyclic code are obtained.

[1]  W. Cary Huffman On the decomposition of self-dual codes over F2+uF2 with an automorphism of odd prime order , 2007, Finite Fields Their Appl..

[2]  Steven T. Dougherty,et al.  Cyclic Codes Over$$\mathbb{Z}_{4}$$ of Even Length , 2006, Des. Codes Cryptogr..

[3]  Elwyn R. Berlekamp Negacyclic codes for the Lee metric , 1966 .

[4]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[5]  Ana Salagean,et al.  Repeated-root cyclic and negacyclic codes over a finite chain ring , 2006, Discret. Appl. Math..

[6]  James L. Massey,et al.  On Repeated-root Cyclic Codes , 1991, IEEE Trans. Inf. Theory.

[7]  Mohammed M. Al-Ashker SIMPLEX CODES OVER THE RING F 2 + uF 2 , 2005 .

[8]  Jacques Wolfmann,et al.  Negacyclic and cyclic codes over Z4 , 1999, IEEE Trans. Inf. Theory.

[9]  Shixin Zhu,et al.  Repeated-root constacyclic codes of length nlps , 2017, Discret. Math..

[10]  Karl-Heinz Zimmermann On generalizations of repeated-root cyclic codes , 1996, IEEE Trans. Inf. Theory.

[11]  Akihiro Munemasa,et al.  Type II codes over F2 + 11F2 and applications to Hermitian modular forms , 2003 .

[12]  Sergio R. López-Permouth,et al.  Cyclic and negacyclic codes over finite chain rings , 2004, IEEE Transactions on Information Theory.

[13]  Ron M. Roth,et al.  On cyclic MDS codes of length q over GF(q) , 1986, IEEE Trans. Inf. Theory.

[14]  Graham H. Norton,et al.  On the Structure of Linear and Cyclic Codes over a Finite Chain Ring , 2000, Applicable Algebra in Engineering, Communication and Computing.

[15]  Irfan Siap Linear codes over F2 + u F2 and their complete weight enumerators , 2002 .

[16]  H. Dinh Constacyclic Codes of Length $2^s$ Over Galois Extension Rings of ${\BBF}_{2}+u{\BBF}_2$ , 2009, IEEE Transactions on Information Theory.

[17]  Cheong Boon Soh,et al.  A note on the q-ary image of a qm-ary repeated-root cyclic code , 1997, IEEE Trans. Inf. Theory.

[18]  N. J. A. Sloane,et al.  A linear construction for certain Kerdock and Preparata codes , 1993, ArXiv.

[19]  Taher Abualrub,et al.  On the generators of Z4 cyclic codes of length 2e , 2003, IEEE Trans. Inf. Theory.

[20]  Hai Quang Dinh,et al.  On the linear ordering of some classes of negacyclic and cyclic codes and their distance distributions , 2008, Finite Fields Their Appl..

[21]  Thomas Blackford Cyclic Codes Over Z4 of Oddly Even Length , 2003, Discret. Appl. Math..

[22]  Thomas Blackford,et al.  Cyclic Codes Over Z4 of Oddly Even Length , 2001, Discret. Appl. Math..

[23]  Thomas Blackford,et al.  Negacyclic codes over Z4 of even length , 2003, IEEE Trans. Inf. Theory.

[24]  S. Berman Semisimple cyclic and Abelian codes. II , 1967 .

[25]  Daniel J. Costello,et al.  Polynomial weights and code constructions , 1973, IEEE Trans. Inf. Theory.

[26]  Alexis Bonnecaze,et al.  Decoding of Cyclic Codes Over , 1999 .

[27]  A. Sălăgean,et al.  On the stucture of linear and cyclic codes over finite chain rings , 2018 .

[28]  Carmen-Simona Nedeloaia Weight distributions of cyclic self-dual codes , 2003, IEEE Trans. Inf. Theory.

[29]  Parampalli Udaya,et al.  Cyclic Codes and Self-Dual Codes Over F2 + uF2 , 1999, IEEE Trans. Inf. Theory.

[30]  Shixin Zhu,et al.  Negacyclic codes of length 2p2 over 𝔽pm + u𝔽pm , 2015, Finite Fields Their Appl..

[31]  AbualrubT.,et al.  On the generators of Z4 cyclic codes of length 2e , 2006 .

[32]  R. Brualdi,et al.  Handbook Of Coding Theory , 2011 .

[33]  H. Q. Dinh,et al.  Negacyclic codes of length 2/sup s/ over galois rings , 2005, IEEE Transactions on Information Theory.

[34]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[35]  Hai Q. Dinh,et al.  Repeated-root constacyclic codes of length 2ps , 2012, Finite Fields Their Appl..

[36]  H. Dinh Constacyclic Codes of Length p^s Over Fpm + uFpm , 2010 .

[37]  A. Nechaev,et al.  Kerdock code in a cyclic form , 1989 .

[38]  N. J. A. Sloane,et al.  The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.

[39]  J. Wolfman Negacyclic and cyclic codes over Z/sub 4/ , 1999 .

[40]  Chaoping Xing,et al.  On Self-Dual Cyclic Codes Over Finite Fields , 2011, IEEE Transactions on Information Theory.

[41]  Hai Q. Dinh Structure of repeated-root constacyclic codes of length 3ps and their duals , 2013, Discret. Math..

[42]  Q DinhHai Constacyclic codes of length 2sover Galois extension rings of F2 + uF2 , 2009 .

[43]  Taher Abualrub On the Generators of Z_4 Cyclic Codes of Length 2^e , 2003 .

[44]  Yonglin Cao On constacyclic codes over finite chain rings , 2013, Finite Fields Their Appl..

[45]  Hongwei Liu,et al.  Constacyclic codes over finite fields , 2012, Finite Fields Their Appl..