The Drosophila visual system

A compact genome and a tiny brain make Drosophila the prime model to understand the neural substrate of behavior. The neurogenetic efforts to reveal neural circuits underlying Drosophila vision started about half a century ago, and now the field is booming with sophisticated genetic tools, rich behavioral assays, and importantly, a greater number of scientists joining from different backgrounds. This review will briefly cover the structural anatomy of the Drosophila visual system, the animal’s visual behaviors, the genes involved in assembling these circuits, the new and powerful techniques, and the challenges ahead for ultimately identifying the general principles of biological computation in the brain. A typical brain utilizes a great many compact neural circuits to collect and process information from the internal biological and external environmental worlds and generates motor commands for observable behaviors. The fruit fly Drosophila melanogaster, despite of its miniature body and tiny brain, can survive in almost any corner of the world.1 It can find food, court mate, fight rival conspecific, avoid predators, and amazingly fly without crashing into trees. Drosophila vision and its underlying neuronal machinery has been a key research model for at least half century for neurogeneticists.2 Given the efforts invested on the visual system, this animal model is likely to offer the first full understanding of how visual information is computed by a multi-cellular organism. Furthermore, research in Drosophila has revealed many genes that play crucial roles in the formation of functional brains across species. The architectural similarities between the visual systems of Drosophila and vertebrate at the molecular, cellular, and network levels suggest new principles discovered at the circuit level on the relationship between neurons and behavior in Drosophila shall also contribute greatly to our understanding of the general principles for how bigger brains work.3 I start with the anatomy of Drosophila visual system, which surprisingly still contains many uncharted areas.

[1]  Ann-Shyn Chiang,et al.  A Map of Olfactory Representation in the Drosophila Mushroom Body , 2007, Cell.

[2]  A. Nern,et al.  An isoform-specific allele of Drosophila N-cadherin disrupts a late step of R7 targeting. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Julie H. Simpson,et al.  A GAL4-driver line resource for Drosophila neurobiology. , 2012, Cell reports.

[4]  Louis K. Scheffer,et al.  Semi-automated reconstruction of neural circuits using electron microscopy , 2010, Current Opinion in Neurobiology.

[5]  Patrick M. Lu,et al.  Flies dynamically anti-track, rather than ballistically escape, aversive odor during flight , 2012, Journal of Experimental Biology.

[6]  B. van Swinderen Attention in Drosophila. , 2011, International review of neurobiology.

[7]  Michael H Dickinson,et al.  Odor localization requires visual feedback during free flight in Drosophila melanogaster , 2003, Journal of Experimental Biology.

[8]  K. Fischbach,et al.  The optic lobe of Drosophila melanogaster , 2004, Cell and Tissue Research.

[9]  Michael B. Reiser,et al.  The role of visual and mechanosensory cues in structuring forward flight in Drosophila melanogaster , 2007, Journal of Experimental Biology.

[10]  M. Heisenberg,et al.  Vision in Drosophila: Genetics of Microbehavior , 2011 .

[11]  Guangju Ji,et al.  Structural insight into enhanced calcium indicator GCaMP3 and GCaMPJ to promote further improvement , 2013, Protein & Cell.

[12]  Michael B. Reiser,et al.  Two-photon calcium imaging from motion-sensitive neurons in head-fixed Drosophila during optomotor walking behavior , 2010, Nature Methods.

[13]  Nikos Papadopoulos,et al.  Age-specific and lifetime behavior patterns in Drosophila melanogaster and the Mediterranean fruit fly, Ceratitis capitata , 2006, Experimental Gerontology.

[14]  Nikos Papadopoulos,et al.  Recording Lifetime Behavior and Movement in an Invertebrate Model , 2011, PloS one.

[15]  S. Zipursky,et al.  Dscam-mediated repulsion controls tiling and self-avoidance , 2008, Current Opinion in Neurobiology.

[16]  M. Bate,et al.  The development of Drosophila melanogaster , 1993 .

[17]  K. Svoboda,et al.  Genetic Dissection of Neural Circuits , 2008, Neuron.

[18]  Michael H Dickinson,et al.  Active and Passive Antennal Movements during Visually Guided Steering in Flying Drosophila , 2011, The Journal of Neuroscience.

[19]  K. Götz,et al.  Fractionation of Drosophila populations according to optomotor traits. , 1970, The Journal of experimental biology.

[20]  Michael H. Dickinson,et al.  Multi-camera real-time three-dimensional tracking of multiple flying animals , 2010, Journal of The Royal Society Interface.

[21]  Michael H. Dickinson,et al.  Olfactory modulation of flight in Drosophila is sensitive, selective and rapid , 2010, Journal of Experimental Biology.

[22]  S. Zipursky,et al.  Drosophila LAR Regulates R1-R6 and R7 Target Specificity in the Visual System , 2001, Neuron.

[23]  T. J. Wardill,et al.  Multiple Spectral Inputs Improve Motion Discrimination in the Drosophila Visual System , 2012, Science.

[24]  H. Baier,et al.  Molecular and cellular mechanisms of lamina-specific axon targeting. , 2010, Cold Spring Harbor perspectives in biology.

[25]  M. Dickinson,et al.  A New Chamber for Studying the Behavior of Drosophila , 2010, PloS one.

[26]  R. Strauss,et al.  Analysis of a spatial orientation memory in Drosophila , 2008, Nature.

[27]  A Guo,et al.  Choice Behavior of Drosophila Facing Contradictory Visual Cues , 2001, Science.

[28]  Kei Ito,et al.  Optic Glomeruli and Their Inputs in Drosophila Share an Organizational Ground Pattern with the Antennal Lobes , 2012, The Journal of Neuroscience.

[29]  B Schnell,et al.  Processing of horizontal optic flow in three visual interneurons of the Drosophila brain. , 2010, Journal of neurophysiology.

[30]  Michael H Dickinson,et al.  Closing the loop between neurobiology and flight behavior in Drosophila , 2004, Current Opinion in Neurobiology.

[31]  G. Miesenböck,et al.  Sex-Specific Control and Tuning of the Pattern Generator for Courtship Song in Drosophila , 2008, Cell.

[32]  J. Sanes,et al.  Design Principles of Insect and Vertebrate Visual Systems , 2010, Neuron.

[33]  Alexander Borst,et al.  ON and OFF pathways in Drosophila motion vision , 2010, Nature.

[34]  Martin Heisenberg,et al.  The rôle of retinula cell types in visual behavior ofDrosophila melanogaster , 2004, Journal of comparative physiology.

[35]  Reinhard Wolf,et al.  Motion vision is independent of color in Drosophila , 2008, Proceedings of the National Academy of Sciences.

[36]  Karl-Friedrich Fischbach,et al.  Optic lobe development. , 2008, Advances in experimental medicine and biology.

[37]  Troy Zars,et al.  Learning and memory in Drosophila: behavior, genetics, and neural systems. , 2011, International review of neurobiology.

[38]  Mark A. Frye,et al.  Figure Tracking by Flies Is Supported by Parallel Visual Streams , 2012, Current Biology.

[39]  B. Swinderen,et al.  Attention-like processes in Drosophila require short-term memory genes. , 2007 .

[40]  M. Dickinson,et al.  Visually Mediated Motor Planning in the Escape Response of Drosophila , 2008, Current Biology.

[41]  A. Borst,et al.  Internal Structure of the Fly Elementary Motion Detector , 2011, Neuron.

[42]  Dario L. Ringach,et al.  Theta Motion Processing in Fruit Flies , 2010, Front. Behav. Neurosci..

[43]  M. Dickinson,et al.  Flying Drosophila Orient to Sky Polarization , 2012, Current Biology.

[44]  É. Bourg,et al.  Learned suppression of photopositive tendencies inDrosophila melanogaster , 2002, Animal learning & behavior.

[45]  I. Meinertzhagen,et al.  Direct connections between the R7/8 and R1–6 photoreceptor subsystems in the dipteran visual system , 1989, Cell and Tissue Research.

[46]  Francisco A. Zabala,et al.  A Simple Strategy for Detecting Moving Objects during Locomotion Revealed by Animal-Robot Interactions , 2012, Current Biology.

[47]  Irina Sinakevitch,et al.  Organization of local interneurons in optic glomeruli of the dipterous visual system and comparisons with the antennal lobes , 2007, Developmental neurobiology.

[48]  T. R. Clandinin,et al.  More than just glue , 2009, Cell adhesion & migration.

[49]  M. Dickinson,et al.  Active flight increases the gain of visual motion processing in Drosophila , 2010, Nature Neuroscience.

[50]  Jasper Akerboom,et al.  Optimization of a GCaMP Calcium Indicator for Neural Activity Imaging , 2012, The Journal of Neuroscience.

[51]  T. Schwarz,et al.  A genetic method for generating Drosophila eyes composed exclusively of mitotic clones of a single genotype. , 1999, Genetics.

[52]  J. Horne,et al.  A Slowed Classical Pathway Rather Than Kiss-and-Run Mediates Endocytosis at Synapses Lacking Synaptojanin and Endophilin , 2005, Cell.

[53]  R. Greenspan,et al.  Molecular analysis of flies selected for aggressive behavior , 2006, Nature Genetics.

[54]  Javier DeFelipe,et al.  From the Connectome to the Synaptome: An Epic Love Story , 2010, Science.

[55]  B. van Swinderen Attention-Like Processes in Drosophila Require Short-Term Memory Genes , 2007, Science.

[56]  Kristin Scott,et al.  Motor Control in a Drosophila Taste Circuit , 2009, Neuron.

[57]  Shin-ya Takemura,et al.  Synaptic circuits of the Drosophila optic lobe: The input terminals to the medulla , 2008, The Journal of comparative neurology.

[58]  Thomas Labhart,et al.  Genetic Dissection Reveals Two Separate Retinal Substrates for Polarization Vision in Drosophila , 2012, Current Biology.

[59]  F. Gabbiani,et al.  Escape Behavior: Linking Neural Computation to Action , 2012, Current Biology.

[60]  W. Denk,et al.  Serial Block-Face Scanning Electron Microscopy to Reconstruct Three-Dimensional Tissue Nanostructure , 2004, PLoS biology.

[61]  Jing W. Wang,et al.  Presynaptic Facilitation by Neuropeptide Signaling Mediates Odor-Driven Food Search , 2011, Cell.

[62]  D. Hadjieconomou,et al.  A step-by-step guide to visual circuit assembly in Drosophila , 2011, Current Opinion in Neurobiology.

[63]  Michael H Dickinson,et al.  Motor output reflects the linear superposition of visual and olfactory inputs in Drosophila , 2004, Journal of Experimental Biology.

[64]  Yueqing Peng,et al.  Dopamine-Mushroom Body Circuit Regulates Saliency-Based Decision-Making in Drosophila , 2007, Science.

[65]  Michael H. Dickinson,et al.  TrackFly: Virtual reality for a behavioral system analysis in free-flying fruit flies , 2008, Journal of Neuroscience Methods.

[66]  G. Knott,et al.  Serial Section Scanning Electron Microscopy of Adult Brain Tissue Using Focused Ion Beam Milling , 2008, The Journal of Neuroscience.

[67]  I. Meinertzhagen,et al.  Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster , 1991, The Journal of comparative neurology.

[68]  Andreas S. Thum,et al.  The Neural Substrate of Spectral Preference in Drosophila , 2008, Neuron.

[69]  Zhiyuan Lu,et al.  Drosophila Dscam Proteins Regulate Postsynaptic Specificity at Multiple-Contact Synapses , 2010, Neuron.

[70]  R. Strauss,et al.  Goal-Driven Behavioral Adaptations in Gap-Climbing Drosophila , 2005, Current Biology.

[71]  Simon Tavaré,et al.  O fly, where art thou? , 2008, Journal of The Royal Society Interface.

[72]  J. Sanes,et al.  Ome sweet ome: what can the genome tell us about the connectome? , 2008, Current Opinion in Neurobiology.

[73]  Claude Desplan,et al.  The Color-Vision Circuit in the Medulla of Drosophila , 2008, Current Biology.

[74]  R. Strauss,et al.  A higher control center of locomotor behavior in the Drosophila brain , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[75]  S. Benzer BEHAVIORAL MUTANTS OF Drosophila ISOLATED BY COUNTERCURRENT DISTRIBUTION. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[76]  K. Fischbach,et al.  The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure , 1989, Cell and Tissue Research.

[77]  S. Zipursky,et al.  N-Cadherin Regulates Target Specificity in the Drosophila Visual System , 2001, Neuron.

[78]  Mutants affecting plasticity of phototactic behaviour in Drosophila melanogaster , 1984 .

[79]  Liqun Luo,et al.  Small GTPase Cdc42 Is Required for Multiple Aspects of Dendritic Morphogenesis , 2003, The Journal of Neuroscience.

[80]  L. Vosshall Into the mind of a fly , 2007, Nature.

[81]  Michael B. Reiser,et al.  Neural correlates of illusory motion perception in Drosophila , 2011, Proceedings of the National Academy of Sciences.

[82]  T. Morgan,et al.  SEX LIMITED INHERITANCE IN DROSOPHILA. , 2022, Science.

[83]  B. Swinderen,et al.  Attention in Drosophila. , 2011 .

[84]  M. Heisenberg,et al.  Attracting the attention of a fly , 2011, Proceedings of the National Academy of Sciences.

[85]  S. N. Fry,et al.  Visual control of flight speed in Drosophila melanogaster , 2009, Journal of Experimental Biology.

[86]  R. Hardie Polarization Vision: Drosophila Enters the Arena , 2012, Current Biology.

[87]  Reinhard Wolf,et al.  Polarization sensitivity of course control inDrosophila melanogaster , 1980, Journal of comparative physiology.

[88]  Pietro Perona,et al.  High-throughput Ethomics in Large Groups of Drosophila , 2009, Nature Methods.

[89]  Yan Zhu,et al.  Peripheral Visual Circuits Functionally Segregate Motion and Phototaxis Behaviors in the Fly , 2009, Current Biology.

[90]  M. Dickinson,et al.  A comparison of visual and haltere-mediated feedback in the control of body saccades in Drosophila melanogaster , 2006, Journal of Experimental Biology.

[91]  Martin Heisenberg,et al.  Contribution of photoreceptor subtypes to spectral wavelength preference in Drosophila , 2010, Proceedings of the National Academy of Sciences.

[92]  Dario L. Ringach,et al.  Flies see second-order motion , 2008, Current Biology.

[93]  K. Melnattur,et al.  Visual circuit assembly in Drosophila , 2011, Developmental neurobiology.

[94]  Claude Desplan,et al.  Building a retinal mosaic: cell-fate decision in the fly eye. , 2004, Trends in cell biology.

[95]  A. Borst,et al.  Fly motion vision. , 2010, Annual review of neuroscience.

[96]  M. Dickinson,et al.  Summation of visual and mechanosensory feedback in Drosophila flight control , 2004, Journal of Experimental Biology.

[97]  Damon A. Clark,et al.  Defining the Computational Structure of the Motion Detector in Drosophila , 2011, Neuron.

[98]  N. Strausfeld,et al.  Dissection of the Peripheral Motion Channel in the Visual System of Drosophila melanogaster , 2007, Neuron.

[99]  Fabrizio Gabbiani,et al.  A Genetic Push to Understand Motion Detection , 2011, Neuron.

[100]  Marie P Suver,et al.  Octopamine Neurons Mediate Flight-Induced Modulation of Visual Processing in Drosophila , 2012, Current Biology.

[101]  Ian A. Meinertzhagen,et al.  Cholinergic Circuits Integrate Neighboring Visual Signals in a Drosophila Motion Detection Pathway , 2011, Current Biology.

[102]  Saskia E. J. de Vries,et al.  Optogenetic stimulation of escape behavior in Drosophila melanogaster. , 2013, Journal of visualized experiments : JoVE.

[103]  Saskia E. J. de Vries,et al.  Loom-Sensitive Neurons Link Computation to Action in the Drosophila Visual System , 2012, Current Biology.

[104]  I. Meinertzhagen,et al.  The genetic analysis of functional connectomics in Drosophila. , 2012, Advances in genetics.

[105]  Thomas Hunt Morgan,et al.  Sex-linked inheritance in Drosophila , 1916 .

[106]  Jamey S. Kain,et al.  Phototactic personality in fruit flies and its suppression by serotonin and white , 2012, Proceedings of the National Academy of Sciences.

[107]  Aike Guo,et al.  Lobula-specific visual projection neurons are involved in perception of motion-defined second-order motion in Drosophila , 2013, Journal of Experimental Biology.

[108]  Roland Strauss,et al.  Visual Targeting of Motor Actions in Climbing Drosophila , 2010, Current Biology.

[109]  Liqun Luo,et al.  Structure of the vertical and horizontal system neurons of the lobula plate in Drosophila , 2002, The Journal of comparative neurology.

[110]  Michael B. Reiser,et al.  Walking Modulates Speed Sensitivity in Drosophila Motion Vision , 2010, Current Biology.

[111]  Y. Rao,et al.  Mapping Neural Circuits with Activity-Dependent Nuclear Import of a Transcription Factor , 2012, Journal of neurogenetics.

[112]  Kei Ito,et al.  Systematic analysis of the visual projection neurons of Drosophila melanogaster. I. Lobula‐specific pathways , 2006, The Journal of comparative neurology.

[113]  N. Perrimon,et al.  Drosophila genome-wide RNAi screens: are they delivering the promise? , 2006, Cold Spring Harbor symposia on quantitative biology.

[114]  N. Perrimon,et al.  Where gene discovery turns into systems biology: genome‐scale RNAi screens in Drosophila , 2011, Wiley interdisciplinary reviews. Systems biology and medicine.

[115]  Chun-Yuan Ting,et al.  Visual circuit development in Drosophila , 2007, Current Opinion in Neurobiology.

[116]  J. Chandler Where art thou , 2002 .

[117]  Mark A. Frye,et al.  Drosophila Tracks Carbon Dioxide in Flight , 2013, Current Biology.

[118]  Michael B. Reiser,et al.  Visual Place Learning in Drosophila melanogaster , 2011, Nature.

[119]  C. Montell Drosophila visual transduction , 2012, Trends in Neurosciences.

[120]  A. Borst Drosophila's View on Insect Vision , 2009, Current Biology.

[121]  Y. Jan,et al.  dunce, a mutant of Drosophila deficient in learning. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[122]  D. Dickman,et al.  Mutations in a Drosophila α2δ Voltage-Gated Calcium Channel Subunit Reveal a Crucial Synaptic Function , 2008, The Journal of Neuroscience.

[123]  Mark A. Frye,et al.  Crossmodal Visual Input for Odor Tracking during Fly Flight , 2008, Current Biology.

[124]  Michael H Dickinson,et al.  Visual stimulation of saccades in magnetically tethered Drosophila , 2006, Journal of Experimental Biology.

[125]  Gordon J. Berman,et al.  Automated hull reconstruction motion tracking (HRMT) applied to sideways maneuvers of free-flying insects , 2009, Journal of Experimental Biology.

[126]  Pietro Perona,et al.  Automated monitoring and analysis of social behavior in Drosophila , 2009, Nature Methods.

[127]  Julie H. Simpson,et al.  Genetic Manipulation of Genes and Cells in the Nervous System of the Fruit Fly , 2011, Neuron.

[128]  Alexander Borst,et al.  Object tracking in motion-blind flies , 2013, Nature Neuroscience.

[129]  Dawnis M Chow,et al.  An Olfactory Circuit Increases the Fidelity of Visual Behavior , 2011, The Journal of Neuroscience.

[130]  Damon A. Clark,et al.  Watching the fly brain in action , 2010, Nature Methods.

[131]  Alexander Y Katsov,et al.  Motion Processing Streams in Drosophila Are Behaviorally Specialized , 2008, Neuron.

[132]  E. Buchner,et al.  Editorial: Drosophila Neurogenetics - The Heisenberg Impact , 2009, Journal of neurogenetics.

[133]  Roger C. Hardie,et al.  Visual transduction in Drosophila , 2001, Nature.

[134]  Ralph J Greenspan,et al.  Salience modulates 20–30 Hz brain activity in Drosophila , 2003, Nature Neuroscience.

[135]  Claude Desplan,et al.  Building a projection map for photoreceptor neurons in the Drosophila optic lobes. , 2004, Seminars in cell & developmental biology.

[136]  Enrique Blanco,et al.  Coordinate control of synaptic-layer specificity and rhodopsins in photoreceptor neurons , 2008, Nature.

[137]  M. Heisenberg,et al.  Distinct memory traces for two visual features in the Drosophila brain , 2006, Nature.

[138]  Christopher J. Potter,et al.  A versatile in vivo system for directed dissection of gene expression patterns , 2011, Nature Methods.

[139]  M. Carandini From circuits to behavior: a bridge too far? , 2012, Nature Neuroscience.