Theory of superconductivity in doped quantum paraelectrics

[1]  P. Chandra,et al.  Superconductivity from energy fluctuations in dilute quantum critical polar metals , 2021, Nature Communications.

[2]  H. Hwang,et al.  Low-density superconductivity in SrTiO$_3$ bounded by the adiabatic criterion , 2021, 2106.10802.

[3]  Jirong Sun,et al.  Electric field control of superconductivity at the LaAlO3/KTaO3(111) interface , 2021, Science.

[4]  J. Zuo,et al.  Two-dimensional superconductivity and anisotropic transport at KTaO3 (111) interfaces , 2021, Science.

[5]  Jirong Sun,et al.  Two-Dimensional Superconductivity at the LaAlO_{3}/KTaO_{3}(110) Heterointerface. , 2020, Physical review letters.

[6]  D. Maslov,et al.  Quasiparticle and Nonquasiparticle Transport in Doped Quantum Paraelectrics. , 2020, Physical review letters.

[7]  M. Gastiasoro,et al.  Theory of Rashba coupling mediated superconductivity in incipient ferroelectrics , 2021 .

[8]  X. Bai,et al.  Three-Dimensional Limit of Bulk Rashba Effect in Ferroelectric Semiconductor GeTe. , 2020, Nano letters.

[9]  G. Lonzarich,et al.  Superconductivity mediated by polar modes in ferroelectric metals , 2020, Nature Communications.

[10]  S. Kivelson,et al.  Eliashberg theory of phonon-mediated superconductivity — When it is valid and how it breaks down , 2020, Annals of Physics.

[11]  P. Chandra,et al.  Multiband Quantum Criticality of Polar Metals. , 2020, Physical review letters.

[12]  M. Gastiasoro,et al.  Anisotropic superconductivity mediated by ferroelectric fluctuations in cubic systems with spin-orbit coupling , 2020, Physical Review B.

[13]  Jun Hee Lee,et al.  Topological superconductivity from transverse optical phonons in oxide heterostructures , 2019, Physical Review Materials.

[14]  Philippe Ghosez,et al.  Rationalizing and engineering Rashba spin-splitting in ferroelectric oxides , 2019, npj Quantum Materials.

[15]  C. Rischau,et al.  Possible mechanism for superconductivity in doped SrTiO3 , 2019, Physical Review Research.

[16]  J. Ruhman,et al.  Superconductivity near a Ferroelectric Quantum Critical Point in Ultralow-Density Dirac Materials , 2019, Physical Review X.

[17]  M. Gastiasoro,et al.  Phonon-mediated superconductivity in low carrier-density systems , 2019, Physical Review B.

[18]  G. Kresse,et al.  Superconductivity in SrTiO3: Dielectric Function Method for Non-Parabolic Bands , 2018, Journal of Superconductivity and Novel Magnetism.

[19]  Y. Kedem Novel pairing mechanism for superconductivity at a vanishing level of doping driven by critical ferroelectric modes , 2018, Physical Review B.

[20]  A. Balatsky,et al.  Superconductivity at low density near a ferroelectric quantum critical point: Doped SrTiO3 , 2018, Physical Review B.

[21]  M. Scheffler,et al.  Single-Gap Superconductivity and Dome of Superfluid Density in Nb-Doped SrTiO_{3}. , 2017, Physical review letters.

[22]  H. Hwang,et al.  Polaronic behavior in a weak-coupling superconductor , 2016, Proceedings of the National Academy of Sciences.

[23]  Y. Nakajima,et al.  Beyond triplet: Unconventional superconductivity in a spin-3/2 topological semimetal , 2016, Science Advances.

[24]  L. Fu,et al.  Pairing States of Spin-3/2 Fermions: Symmetry-Enforced Topological Gap Functions , 2017, 1709.04487.

[25]  J. Triscone,et al.  Modulation of the superconducting critical temperature due to quantum confinement at the LaAlO 3 /SrTiO 3 interface , 2016, 1611.07763.

[26]  J. Ruhman,et al.  Superconductivity at very low density: The case of strontium titanate , 2016, 1605.01737.

[27]  E. Fradkin,et al.  Topological superconducting phases from inversion symmetry breaking order in spin-orbit-coupled systems , 2016, 1602.02778.

[28]  M. Scheurer Mechanism, time-reversal symmetry, and topology of superconductivity in noncentrosymmetric systems , 2016, 1601.05459.

[29]  J. Ihm,et al.  Strongly enhanced Rashba splittings in an oxide heterostructure: A tantalate monolayer on BaHfO3 , 2016, 1601.05443.

[30]  L. Gor’kov Phonon mechanism in the most dilute superconductor n-type SrTiO3 , 2015, Proceedings of the National Academy of Sciences.

[31]  Kamran Behnia,et al.  Scalable T2 resistivity in a small single-component Fermi surface , 2015, Science.

[32]  L. Fu,et al.  Odd-Parity Superconductivity in the Vicinity of Inversion Symmetry Breaking in Spin-Orbit-Coupled Systems. , 2015, Physical review letters.

[33]  N. Spaldin,et al.  Quantum Critical Origin of the Superconducting Dome in SrTiO_{3}. , 2015, Physical review letters.

[34]  Lin Xiao,et al.  Critical Doping for the Onset of a Two-Band Superconducting Ground State in SrTiO3 , 2014 .

[35]  S. Stemmer,et al.  Intrinsic Mobility Limiting Mechanisms in Lanthanum-Doped Strontium Titanate , 2014, 1405.2967.

[36]  S. Sarma,et al.  Odd-parity superconductivity from phonon-mediated pairing: Application to Cu x Bi 2 Se 3 , 2014, 1402.7061.

[37]  K. Held,et al.  Theory of spin-orbit coupling at LaAlO 3 /SrTiO 3 interfaces and SrTiO 3 surfaces , 2012, 1209.4705.

[38]  J. V. Mechelen,et al.  Common Fermi-liquid origin of T^2 resistivity and superconductivity in n-type SrTiO3 , 2011, 1109.3050.

[39]  Changyoung Kim,et al.  Orbital-angular-momentum based origin of Rashba-type surface band splitting. , 2011, Physical review letters.

[40]  Hongtao Yuan,et al.  Discovery of superconductivity in KTaO₃ by electrostatic carrier doping. , 2011, Nature nanotechnology.

[41]  A. Kolesnikov,et al.  Large phonon band gap inSrTiO3and the vibrational signatures of ferroelectricity inATiO3perovskites: First-principles lattice dynamics and inelastic neutron scattering , 2008, 0803.1729.

[42]  H. Hagemann,et al.  Electron-phonon interaction and charge carrier mass enhancement in SrTiO3. , 2007, Physical review letters.

[43]  N. Reyren,et al.  Superconducting Interfaces Between Insulating Oxides , 2007, Science.

[44]  T. Geballe,et al.  Type II superconducting parameters of Tl-doped PbTe determined from heat capacity and electronic transport measurements , 2006 .

[45]  M. Sigrist,et al.  Superconductivity without inversion symmetry: MnSi versus CePt3Si. , 2003, Physical review letters.

[46]  Pietronero,et al.  Nonadiabatic superconductivity. I. Vertex corrections for the electron-phonon interactions. , 1995, Physical review. B, Condensed matter.

[47]  Pietronero,et al.  Nonadiabatic superconductivity. II. Generalized Eliashberg equations beyond Migdal's theorem. , 1995, Physical review. B, Condensed matter.

[48]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[49]  D. Bäuerle,et al.  Soft modes in semiconducting SrTiO3: II. The ferroelectric mode , 1980 .

[50]  Y. Takada Theory of Superconductivity in Polar Semiconductors and Its Application to N-Type Semiconducting SrTiO3 , 1980 .

[51]  K. Ngai Two-phonon deformation potential and superconductivity in degenerate semiconductors , 1974 .

[52]  J. Appel Soft mode superconductivity in SrTiO3−x and CaySr1−yTiO3−x , 1971 .

[53]  E. R. Pfeiffer,et al.  Superconducting transition temperatures of semiconducting SrTiO sub 3. , 1967 .

[54]  P. Anderson,et al.  Symmetry Considerations on Martensitic Transformations: "Ferroelectric" Metals? , 1965 .

[55]  A. Larkin,et al.  Possibility of superconductivity in semiconductors , 1962 .

[56]  G. M. Éliashberg,et al.  Interactions between electrons and lattice vibrations in a superconductor , 1960 .

[57]  A. B. Migdal,et al.  INTERACTION BETWEEN ELECTRONS AND THE LATTICE VIBRATIONS IN A NORMAL METAL , 1958 .