Termination proofs for linear simple loops

Analysis of termination and other liveness properties of a program can be reduced to termination proof synthesis for simple loops, i.e., loops with only variable updates in the loop body. Among simple loops, the subset of linear simple loops (LSLs) is particularly interesting because it is common in practice and expressive in theory. Existing techniques can successfully synthesize a linear ranking function for an LSL if there exists one. However, when a terminating LSL does not have a linear ranking function, these techniques fail. In this paper, we describe an automatic method that generates proofs of (universal) termination for LSLs based on the synthesis of disjunctive ranking relations. The method repeatedly finds linear ranking functions on partitions of the state space and checks whether the transitive closure of the transition relation is included in the union of the ranking relations. Our method extends the work of Podelski and Rybalchenko (A complete method for the synthesis of linear ranking functions. In: Proceedings of the 5th international conference on VMCAI, Jan 2004, Venice, Italy, pp 239–251, 2004). We have implemented a prototype of the method and have shown experimental evidence of the effectiveness of our method.

[1]  Henny B. Sipma,et al.  The Polyranking Principle , 2005, ICALP.

[2]  Checking a Large Routine Report of a Conference on High Speed Automatic Calculating machines Universal Turing Machine , 2011 .

[3]  Andreas Podelski,et al.  Abstraction Refinement for Termination , 2005, SAS.

[4]  Andreas Podelski,et al.  Authors’ Addresses , 2003 .

[5]  Andreas Podelski,et al.  Termination proofs for systems code , 2006, PLDI '06.

[6]  Andreas Podelski,et al.  A Complete Method for the Synthesis of Linear Ranking Functions , 2004, VMCAI.

[7]  Sumit Gulwani,et al.  Control-flow refinement and progress invariants for bound analysis , 2009, PLDI '09.

[8]  Peter W. O'Hearn,et al.  Variance analyses from invariance analyses , 2007, POPL '07.

[9]  Henny B. Sipma,et al.  Linear Ranking with Reachability , 2005, CAV.

[10]  Patrick Cousot,et al.  An abstract interpretation framework for termination , 2012, POPL '12.

[11]  Henny B. Sipma,et al.  Practical Methods for Proving Program Termination , 2002, CAV.

[12]  Sumit Gulwani,et al.  Ranking Abstractions , 2008, ESOP.

[13]  Tomás E. Uribe,et al.  Generating Finite-State Abstractions of Reactive Systems Using Decision Procedures , 1998, CAV.

[14]  Sumit Gulwani,et al.  SPEED: precise and efficient static estimation of program computational complexity , 2009, POPL '09.

[15]  Sumit Gulwani,et al.  The reachability-bound problem , 2010, PLDI '10.

[16]  Peter W. O'Hearn,et al.  Automatic Termination Proofs for Programs with Shape-Shifting Heaps , 2006, CAV.

[17]  Daniel Kroening,et al.  Termination Analysis with Compositional Transition Invariants , 2010, CAV.

[18]  Patrick Cousot,et al.  Proving Program Invariance and Termination by Parametric Abstraction, Lagrangian Relaxation and Semidefinite Programming , 2005, VMCAI.

[19]  Andreas Podelski,et al.  Transition predicate abstraction and fair termination , 2005, POPL '05.

[20]  Xavier Rival,et al.  The trace partitioning abstract domain , 2007, TOPL.

[21]  Frank Plumpton Ramsey,et al.  On a Problem of Formal Logic , 1930 .

[22]  Anna Philippou,et al.  Tools and Algorithms for the Construction and Analysis of Systems , 2018, Lecture Notes in Computer Science.

[23]  Amir Pnueli,et al.  Ranking Abstraction of Recursive Programs , 2006, VMCAI.

[24]  Ashish Tiwari,et al.  Termination of Linear Programs , 2004, CAV.

[25]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[26]  Sumit Gulwani,et al.  Proving Conditional Termination , 2008, CAV.

[27]  Henny B. Sipma,et al.  Synthesis of Linear Ranking Functions , 2001, TACAS.

[28]  Mark Braverman,et al.  Termination of Integer Linear Programs , 2006, CAV.

[29]  A. M. Turing,et al.  Checking a large routine , 1989 .

[30]  GulwaniSumit,et al.  Control-flow refinement and progress invariants for bound analysis , 2009 .

[31]  Patrick Cousot,et al.  Semantic foundations of program analysis , 1981 .

[32]  Henny B. Sipma,et al.  Termination of Polynomial Programs , 2005, VMCAI.

[33]  A. Rybalchenko,et al.  Transition invariants , 2004, LICS 2004.

[34]  Andreas Podelski,et al.  Proving that programs eventually do something good , 2007, POPL '07.