Design and kinematic analysis of a novel upper limb exoskeleton for rehabilitation of stroke patients

This paper details the design process and features of a novel upper limb rehabilitation exoskeleton named CLEVER (Compact, Low-weight, Ergonomic, Virtual/Augmented Reality Enhanced Rehabilitation) ARM. The research effort is focused on designing a lightweight and ergonomic upper-limb rehabilitation exoskeleton capable of producing diverse and perceptually rich training scenarios. To this end, the knowledge available in the literature of rehabilitation robotics is used along with formal conceptual design techniques. This paper briefly reviews the systematic approach used for design of the exoskeleton, and elaborates on the specific details of the proposed design concept and its advantages over other design possibilities. The kinematic structure of CLEVER ARM has eight degrees of freedom supporting the motion of shoulder girdle, glenohumeral joint, elbow and wrist. Six degrees of freedom of the exoskeleton are active, and the two degrees of freedom supporting the wrist motion are passive. Kinematics of the proposed design is studied analytically and experimentally with the aid of a 3D printed prototype. The paper is concluded by some remarks on the optimization of the design, motorization of device, and the fabrication challenges.

[1]  Robert A. Walker,et al.  Anthropometric Survey of U.S. Army Personnel: Summary Statistics, Interim Report for 1988 , 1989 .

[2]  Hermano I Krebs,et al.  Rehabilitation robotics: pilot trial of a spatial extension for MIT-Manus , 2004, Journal of NeuroEngineering and Rehabilitation.

[3]  Sheng Quan Xie,et al.  Exoskeleton robots for upper-limb rehabilitation: state of the art and future prospects. , 2012, Medical engineering & physics.

[4]  B. Brewer,et al.  Poststroke Upper Extremity Rehabilitation: A Review of Robotic Systems and Clinical Results , 2007, Topics in stroke rehabilitation.

[5]  J. P. Friconneau,et al.  ABLE, an innovative transparent exoskeleton for the upper-limb , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[6]  Robert Riener,et al.  ARMin II - 7 DoF rehabilitation robot: mechanics and kinematics , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[7]  S. Leonhardt,et al.  A survey on robotic devices for upper limb rehabilitation , 2014, Journal of NeuroEngineering and Rehabilitation.

[8]  Robert Riener,et al.  ARMin III --arm therapy exoskeleton with an ergonomic shoulder actuation , 2009 .

[9]  Hyung-Soon Park,et al.  IntelliArm: An exoskeleton for diagnosis and treatment of patients with neurological impairments , 2008, 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics.

[10]  Juliane Junker,et al.  Kinesiology Scientific Basis Of Human Motion , 2016 .

[11]  C. Burgar,et al.  Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. , 2002, Archives of physical medicine and rehabilitation.

[12]  C. Carignan,et al.  Design of an arm exoskeleton with scapula motion for shoulder rehabilitation , 2005, ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005..

[13]  Anis Sahbani,et al.  Robotic Exoskeletons: A Perspective for the Rehabilitation of Arm Coordination in Stroke Patients , 2014, Front. Hum. Neurosci..

[14]  H. Krebs,et al.  Effects of Robot-Assisted Therapy on Upper Limb Recovery After Stroke: A Systematic Review , 2008, Neurorehabilitation and neural repair.

[15]  Hermano Igo Krebs,et al.  A wrist extension for MIT-MANUS , 2004 .

[16]  F.C.T. van der Helm,et al.  Kinematic Design to Improve Ergonomics in Human Machine Interaction , 2006, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[17]  A.H.A. Stienen,et al.  Dampace: dynamic force-coordination trainer for the upper extremities , 2007, 2007 IEEE 10th International Conference on Rehabilitation Robotics.

[18]  J.C. Perry,et al.  Upper-Limb Powered Exoskeleton Design , 2007, IEEE/ASME Transactions on Mechatronics.

[19]  L. Merabet,et al.  The plastic human brain cortex. , 2005, Annual review of neuroscience.