Surface science for improved ion traps

Trapped ions are sensitive to electric-field noise from trap-electrode surfaces. This noise has been an obstacle to progress in trapped-ion quantum information processing (QIP) experiments for more than a decade. It causes motional heating of the ions, and thus quantum-state decoherence. This heating is anomalous because it is not easily explained by typical technical-noise sources. Experimental evidence of its dependence on ion-electrode distance, frequency, and electrode temperature points to the surface, rather than the bulk, of the trap electrodes as the origin. In this article, we review experimental efforts and models to help identify and reduce or eliminate the source of the anomalous heating. Recent progress to reduce the heating with in situ cleaning indicates that it may not be a fundamental limit to trapped-ion QIP. Moreover, the extreme sensitivity of trapped ions to electric-field noise may potentially be used as a new tool in surface science.

[1]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[2]  Boris B. Blinov,et al.  Zero-point cooling and low heating of trapped {sup 111}Cd{sup +} ions , 2004, quant-ph/0404142.

[3]  K. Brown,et al.  Coupled quantized mechanical oscillators , 2010, Nature.

[4]  F. Schmidt-Kaler,et al.  Fabrication and heating rate study of microscopic surface electrode ion traps , 2010, 1009.2834.

[5]  D. Engelke,et al.  Spectroscopy of the electric-quadrupole transition 2 S 1/2 (F=0)- 2 D 3/2 (F=2) in trapped 171 Yb + , 2000 .

[6]  C. Kleint Electron emission noise , 1988 .

[7]  S. Reynaud,et al.  Electrostatic patch effects in Casimir-force experiments performed in the sphere-plane geometry , 2012, 1206.6034.

[8]  M. A. Rowe,et al.  Heating of trapped ions from the quantum ground state , 2000 .

[9]  D. Wineland,et al.  Frequency Ratio of Al+ and Hg+ Single-Ion Optical Clocks; Metrology at the 17th Decimal Place , 2008, Science.

[10]  W. Jark,et al.  Investigation of carbon contamination of mirror surfaces exposed to synchrotron radiation , 1983 .

[11]  E. Knill,et al.  Simplified motional heating rate measurements of trapped ions , 2007, 0707.1528.

[12]  C. Monroe,et al.  Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions , 1997, Journal of research of the National Institute of Standards and Technology.

[13]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[14]  I. Hussla,et al.  Ablation of metal surfaces by pulsed ultraviolet lasers under ultrahigh vacuum , 1986 .

[15]  Wolfgang Kautek,et al.  Femtosecond pulse laser ablation of metallic, semiconducting, ceramic, and biological materials , 1994, Other Conferences.

[16]  R Gomer Diffusion of adsorbates on metal surfaces , 1990 .

[17]  C. Monroe,et al.  Scaling the Ion Trap Quantum Processor , 2013, Science.

[18]  R. Byer,et al.  Kelvin probe measurements: investigations of the patch effect with applications to ST-7 and LISA , 2006 .

[19]  Curtis Volin,et al.  Demonstration of integrated microscale optics in surface-electrode ion traps , 2011, 1105.4905.

[20]  Göran V. Hansson,et al.  Photoemission study of the bulk and surface electronic structure of single crystals of gold , 1978 .

[21]  J. Krim Fiber texture and surface composition of evaporated gold films on quartz , 1986 .

[22]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[23]  M. Roukes,et al.  Surface adsorbate fluctuations and noise in nanoelectromechanical systems. , 2011, Nano letters.

[24]  R. Blatt,et al.  Entangled states of trapped atomic ions , 2008, Nature.

[25]  Karl Berggren,et al.  Superconducting microfabricated ion traps , 2010, 1010.6108.

[26]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[27]  F. Schmidt-Kaler,et al.  Sideband cooling and coherent dynamics in a microchip multi-segmented ion trap , 2007, 0712.3249.

[28]  Wineland,et al.  Laser cooling to the zero-point energy of motion. , 1989, Physical review letters.

[29]  Jaroslaw Labaziewicz,et al.  Temperature dependence of electric field noise above gold surfaces. , 2008, Physical review letters.

[30]  S. Lamoreaux,et al.  Observation of the thermal Casimir force , 2010, 1011.5219.

[31]  David Leibrandt,et al.  Suppression of heating rates in cryogenic surface-electrode ion traps. , 2007, Physical review letters.

[32]  C. F. Roos,et al.  Experimental quantum-information processing withC43a+ions , 2008, 0804.1261.

[33]  D. Leibfried,et al.  Near-ground-state transport of trapped-ion qubits through a multidimensional array , 2011, 1106.5005.

[34]  Christian Kurtsiefer,et al.  Experimental study of anomalous heating and trap instabilities in a microscopic 137 Ba ion trap , 2002 .

[35]  Tobias J. Hagge,et al.  Physics , 1929, Nature.

[36]  Isaac L. Chuang,et al.  Demonstration of a scalable, multiplexed ion trap for quantum information processing , 2009, Quantum Inf. Comput..

[37]  M. Rodahl,et al.  X-ray photoemission spectroscopy study of UV/ozone oxidation of Au under ultrahigh vacuum conditions , 1997 .

[38]  Isaac Chuang,et al.  Bright source of cold ions for surface-electrode traps , 2007, physics/0702025.

[39]  Jeremy M. Sage,et al.  Loading of a surface-electrode ion trap from a remote, precooled source , 2012, 1205.6379.

[40]  A. van der Ziel,et al.  Noise in field emission diodes , 1966 .

[41]  F. Schmidt-Kaler,et al.  Quantum State Engineering on an Optical Transition and Decoherence in a Paul Trap , 1999 .

[42]  M. Chaigneau,et al.  Tip enhanced Raman spectroscopy evidence for amorphous carbon contamination on gold surfaces , 2010 .

[43]  Pendry,et al.  Electrons at disordered surfaces and 1/f noise. , 1986, Physical review letters.

[44]  K. Brown,et al.  100-fold reduction of electric-field noise in an ion trap cleaned with in situ argon-ion-beam bombardment. , 2012, Physical review letters.

[45]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[46]  D M Lucas,et al.  Reduction of heating rate in a microfabricated ion trap by pulsed-laser cleaning , 2011, 1110.1486.

[47]  E. Knill,et al.  Deterministic quantum teleportation of atomic qubits , 2004, Nature.

[48]  G. Ma,et al.  Spectral analysis of adsorbate induced field-emission flicker noise. , 1985 .

[49]  J. Preskill Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[50]  R. B. Blakestad,et al.  Microfabricated surface-electrode ion trap for scalable quantum information processing. , 2006, Physical review letters.

[51]  K. Brown,et al.  Techniques for Microwave Near-Field Quantum Control of Trapped Ions , 2012, 1211.6554.

[52]  Gerd Leuchs,et al.  Stylus ion trap for enhanced access and sensing , 2009 .

[53]  R. Blatt,et al.  Quantum simulations with trapped ions , 2011, Nature Physics.

[54]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[55]  D. M. Lucas,et al.  Implementation of a symmetric surface-electrode ion trap with field compensation using a modulated Raman effect , 2009, 0909.3272.

[56]  King,et al.  Demonstration of a fundamental quantum logic gate. , 1995, Physical review letters.

[57]  T. Lin,et al.  Measurement of gold surface self-diffusion by scanning tunneling microscopy , 1988 .

[58]  Klaus Molmer,et al.  Entanglement and quantum computation with ions in thermal motion , 2000 .

[59]  J. Britton,et al.  Scalable arrays of rf Paul traps in degenerate Si , 2009, 0908.1591.

[60]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[61]  Eric Fogarassy,et al.  Recent advances in laser processing of materials , 2006 .

[62]  P. Rabl,et al.  Microscopic model of electric-field-noise heating in ion traps , 2011, 1106.1949.

[63]  P. Rabl,et al.  Influence of monolayer contamination on electric-field-noise heating in ion traps , 2012, 1210.0044.

[64]  A. C. Tam,et al.  A practical excimer laser-based cleaning tool for removal of surface contaminants , 1994 .

[65]  L. C. Emerson,et al.  Measurement and modification of first-wall surface composition in the Oak Ridge Tokamak (ORMAK) , 1975 .

[66]  A. van der Ziel,et al.  Flicker Noise in Electronic Devices , 1979 .

[67]  J. Nørskov,et al.  Why gold is the noblest of all the metals , 1995, Nature.

[68]  C. Monroe,et al.  Scaling and suppression of anomalous heating in ion traps. , 2006, Physical review letters.

[69]  J. D. Phillips,et al.  Design and characteristics of a WEP test in a sounding-rocket payload , 2012, 1206.0028.

[70]  Emanuel Knill,et al.  Physics: Quantum computing , 2010, Nature.