Alkaline volcanic rocks from the Columbia Hills, Gusev crater, Mars

[1] Irvine, Backstay, and Wishstone are the type specimens for three classes of fine-grained or fragmental, relatively unaltered rocks with distinctive thermal emission spectra, found as float on the flanks of the Columbia Hills. Chemical analyses indicate that these rocks are mildly alkaline basalt, trachybasalt, and tephrite, respectively. Their mineralogy consists of Na- and K-rich feldspar(s), low- and high-Ca pyroxenes, ferroan olivine, Fe-Ti (and possibly Cr) oxides, phosphate, and possibly glass. The texture of Wishstone is consistent with a pyroclastic origin, whereas Irvine and Backstay are lavas or possibly dike rocks. Chemical compositions of these rocks plot on or near liquid lines of descent for most elements calculated for Adirondack class rocks (olivine-rich basalts from the Gusev plains) at various pressures from 0.1 to 1.0 GPa. We infer that Wishstone-, Backstay-, and Irvine-class magmas may have formed by fractionation of primitive, oxidized basaltic magma similar to Adirondack-class rocks. The compositions of all these rocks reveal that the Gusev magmatic province is alkaline, distinct from the subalkaline volcanic rocks thought to dominate most of the planet's surface. The fact that differentiated volcanic rocks were not encountered on the plains prior to ascending Husband Hill may suggest a local magma source for volcanism beneath Gusev crater.

[1]  Jeffrey R. Johnson,et al.  The rocks of Gusev Crater as viewed by the Mini‐TES instrument , 2006 .

[2]  C. Floss,et al.  Petrology and chemistry of MIL 03346 and its significance in understanding the petrogenesis of nakhlites on Mars , 2006 .

[3]  William H. Farrand,et al.  Rocks of the Columbia Hills , 2006 .

[4]  Jeffrey R. Johnson,et al.  Spectral variability among rocks in visible and near‐infrared multispectral Pancam data collected at Gusev crater: Examinations using spectral mixture analysis and related techniques , 2006 .

[5]  Nathalie A. Cabrol,et al.  Overview of the Microscopic Imager Investigation during Spirit's first 450 sols in Gusev crater , 2006 .

[6]  William H. Farrand,et al.  Overview of the Spirit Mars Exploration Rover Mission to Gusev Crater: Landing site to Backstay Rock in the Columbia Hills , 2006 .

[7]  Steven W. Squyres,et al.  Alpha Particle X‐Ray Spectrometer (APXS): Results from Gusev crater and calibration report , 2006 .

[8]  William H. Farrand,et al.  Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars , 2006 .

[9]  D. Ming,et al.  Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills , 2006 .

[10]  Jeffrey R. Johnson,et al.  Characterization and petrologic interpretation of olivine‐rich basalts at Gusev Crater, Mars , 2006 .

[11]  Miles J. Johnson,et al.  In‐flight calibration and performance of the Mars Exploration Rover Panoramic Camera (Pancam) instruments , 2006 .

[12]  T. Grove,et al.  Basaltic Lavas at Gusev Crater Revisited , 2006 .

[13]  H. McSween,et al.  Melt inclusions in augite of the Nakhla martian meteorite: Evidence for basaltic parental melt , 2005 .

[14]  M. Mellon,et al.  A volcanic interpretation of Gusev Crater surface materials from thermophysical, spectral, and morphological evidence , 2005 .

[15]  T. Dunn Identification of Terrestrial Alkalic Rocks Using Thermal Emission Spectroscopy: Applications to Martian Remote Sensing , 2005 .

[16]  R. Rieder,et al.  Chemistry of Rocks and Soils in Gusev Crater from the Alpha Particle X-ray Spectrometer , 2004, Science.

[17]  D. Ming,et al.  Mineralogy at Gusev Crater from the Mössbauer Spectrometer on the Spirit Rover , 2004, Science.

[18]  R E Arvidson,et al.  Basaltic rocks analyzed by the Spirit Rover in Gusev Crater. , 2004, Science.

[19]  J. Filiberto,et al.  The Origin and Evolution of Silica-saturated Alkalic Suites: an Experimental Study , 2004 .

[20]  Miles J. Johnson,et al.  Athena Microscopic Imager investigation , 2003 .

[21]  R. Clayton,et al.  Final chemical results from the Mars Pathfinder alpha proton X-ray spectrometer , 2003 .

[22]  Steven W. Squyres,et al.  The new Athena alpha particle X‐ray spectrometer for the Mars Exploration Rovers , 2003 .

[23]  U. Bonnes,et al.  Athena MIMOS II Mossbauer spectrometer investigation , 2003 .

[24]  Michael Bruce Wyatt,et al.  Constraints on the composition and petrogenesis of the Martian crust , 2003 .

[25]  S. T. Elliot,et al.  Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation , 2003 .

[26]  J. Bandfield,et al.  Spectroscopic Identification of Carbonate Minerals in the Martian Dust , 2003, Science.

[27]  J. Filiberto,et al.  Magmas Parental to the Chassigny Meteorite: New Considerations , 2003 .

[28]  Jeffrey R. Johnson,et al.  Low Abundance Materials at the Mars Pathfinder Landing Site: An Investigation Using Spectral Mixture Analysis and Related Techniques , 2002 .

[29]  Harry Y. McSween,et al.  The rocks of Mars, from far and near , 2002 .

[30]  R. W. Le Maitre,et al.  Igneous Rocks: A Classification and Glossary of Terms , 2002 .

[31]  P. Christensen,et al.  Analysis of terrestrial and Martian volcanic compositions using thermal emission spectroscopy 2. Application to Martian surface spectra from the Mars Global Surveyor Thermal Emission Spectrometer , 2001 .

[32]  M. Wyatt Analysis of terrestrial and Martian volcanic compositions using thermal emission spectroscopy , 2001 .

[33]  Rudolf Rieder,et al.  Chemical Composition of Rocks and Soils at the Pathfinder Site , 2001 .

[34]  A. Simon,et al.  Crystal Fractionation and the Evolution of Intra-plate hy-normative Igneous Suites: Insights from their Feldspars , 2000 .

[35]  Joshua L. Bandfield,et al.  A Global View of Martian Surface Compositions from MGS-TES , 2000 .

[36]  A. Jambon,et al.  A simple chondritic model of Mars , 1999 .

[37]  Nathalie A. Cabrol,et al.  Duration of the Ma'adim Vallis/Gusev Crater Hydrogeologic System, Mars , 1998 .

[38]  B. Fegley,et al.  An Oxygen Isotope Model for the Composition of Mars , 1997 .

[39]  J F Mustard,et al.  Seeing through the dust: martian crustal heterogeneity and links to the SNC meteorites , 1995, Science.

[40]  Mark S. Ghiorso,et al.  Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures , 1995 .

[41]  B. Frost,et al.  The generation of oxidized CO2-bearing basaltic melts from reduced CH4-bearing upper mantle sources , 1994 .

[42]  Stephane Erard,et al.  The surface of Syrtis Major - Composition of the volcanic substrate and mixing with altered dust and soil , 1993 .

[43]  H. Wänke,et al.  Chemical composition and accretion history of terrestrial planets , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[44]  R. W. Le Maitre,et al.  A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram , 1986 .

[45]  Mark S. Ghiorso,et al.  Chemical mass transfer in magmatic processes , 1987 .

[46]  A. Stolz The Role of Fractional Crystallization in the Evolution of the Nandewar Volcano, North-eastern New South Wales, Australia , 1985 .

[47]  G. Dreibus,et al.  Mars, a Volatile-Rich Planet , 1985 .

[48]  John B. Adams,et al.  Visible and near‐infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the solar system , 1974 .

[49]  D. W. Hyndman Petrology of igneous and metamorphic rocks , 1972 .

[50]  T. Irvine,et al.  A Guide to the Chemical Classification of the Common Volcanic Rocks , 1971 .