Two stereoisomeric 3I,2II-anhydro-α-cyclodextrins: a molecular dynamics and crystallographic study

Abstract Regioselective epoxide ring opening of 2I,3I-(2IS)-anhydro-α-cyclodextrin (1) through intramolecular attack of hydroxyl groups of neighboring glucose rings occurs in diequatorial fashion to yield 3I,2II-anhydro-α-cyclodextrin (3) with a rigid glucopyranose–dioxane–glucopyranose tricyclic ring system, the usual diaxial opening and the gluco/altro-configurated stereoisomer 2 cannot be detected. Molecular dynamic simulations in water were used to analyze the conformations of 1–3 and the stereochemical implications of this reaction. Due to the contracted 2,3-OH side of the torus, 3 features an inverted conicity compared to the parent α-cyclodextrin. A crystallographic study on the bis-3·3 n-PrOH nonahydrate not only displays little variations between the solid-state and solution geometries of 3, but also provides a molecular picture of a unique inclusion complex in which three n-propanol molecules are distributed in the cavity of a dimeric unit of 3 (monoclinic, space group P21, a=14.257(1), b=22.623(2), c=16.644(1) A, β=104.82(1)°, all 19278 reflections with I>2σ(I) yield R(F)=0.1017).

[1]  S. Immel,et al.  Synthesis, Structure, and Conformational Features of α-Cycloaltrin: A Cycloeligosaccharide with Alternating 4C1/1C4 Pyranoid Chairs† , 1997 .

[2]  Kahee Fujita,et al.  β‐Cycloaltrin: A Cyclooligosaccharide Consisting of Seven α(1 → 4)‐Linked Altropyranoses , 1995 .

[3]  H. Berendsen,et al.  ALGORITHMS FOR MACROMOLECULAR DYNAMICS AND CONSTRAINT DYNAMICS , 1977 .

[4]  H. Yamamura,et al.  Dependence of guest-binding ability on cavity shape of deformed cyclodextrins , 1996 .

[5]  V. Pozsgay,et al.  Synthesis and X-ray crystallographic study of cyclobis-(1 → 2)-α-d-glucopyranosyl peracetate , 1997 .

[6]  F. Allen,et al.  The Cambridge Crystallographic Data Centre: computer-based search, retrieval, analysis and display of information , 1979 .

[7]  G. A. Jeffrey,et al.  Stereographic representation of the cremer-pople ring-puckering parameters for pyranoid rings☆ , 1979 .

[8]  F. Lichtenthaler,et al.  manno- and altro-Sucrose, and some amino-analogues☆ , 1997 .

[9]  S. Immel,et al.  Solution Geometries and Lipophilicity Patterns ofα-Cycloaltrin , 1999 .

[10]  D. Lu,et al.  Synthesis, crystalline structure, conformational analysis, and azidolysis of methyl 2,3-anhydro-α-d-manno- and -allo-pyranoside p-bromobenzyl , 1992 .

[11]  Thomas Steiner,et al.  Structures of the Common Cyclodextrins and Their Larger Analogues-Beyond the Doughnut. , 1998, Chemical reviews.

[12]  J. Brickmann,et al.  Theoretical investigations on the structure and physical properties of cellulose , 1995 .

[13]  A. Coleman,et al.  Synthetic route for selective modification of the secondary hydroxyl face of cyclodextrins , 1993 .

[14]  K. Lipkowitz,et al.  Structural characteristics of cyclodextrins in the solid state. , 1992, Chirality.

[15]  A. Coleman,et al.  Synthesis and properties of cyclo-α-1,4-manno-2,3-epoxides , 1992 .

[16]  M. L. Connolly Solvent-accessible surfaces of proteins and nucleic acids. , 1983, Science.

[17]  M. L. Connolly Analytical molecular surface calculation , 1983 .

[18]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[19]  Synthesis of the first per(3-deoxy)-cyclooligosaccharide: hepta(manno-3-deoxy-6-O-t-butyldimethylsilyl)-β-cyclodextrin , 1999 .

[20]  Michael Schlenkrich,et al.  Force field parameters for carbohydrates , 1996 .

[21]  D. Cremer,et al.  General definition of ring puckering coordinates , 1975 .

[22]  Kazuki Saito,et al.  General method for preparing altrosides from 2,3-manno-epoxides and its application to synthesis of alternative β-cyclodextrin with an altroside as the constituent of macrocyclic structure , 1994 .

[23]  V. T. D'Souza,et al.  Methods for Selective Modifications of Cyclodextrins. , 1998, Chemical reviews.

[24]  F. Toda,et al.  Modifications of the secondary hydroxyl side of α-cyclodextrin and nmr studies of them , 1990 .

[25]  Lennart Nilsson,et al.  Empirical energy functions for energy minimization and dynamics of nucleic acids , 1986 .

[26]  J. Correia,et al.  Homogeneous Catalytic Oxidation of Arenes and a New Synthesis of Vitamin K3 , 1995 .

[27]  S. Immel,et al.  The 2,3-anhydro-α-cyclomannin−1-propanol hexahydrate: topography, lipophilicity pattern and solid-state architecture† , 2000 .

[28]  Olga Kennard,et al.  Systematic analysis of structural data as a research technique in organic chemistry , 1983 .

[29]  M. Yamaguchi,et al.  Does the abnormal ring opening of cyclodextrin-2,3-epoxide have generality? , 1999 .

[30]  Wen-Hua Chen,et al.  Guest-induced conformational change in a flexible host: mono- altro-β-cyclodextrin 1 Part 20 of the series Molecular Modeling of Saccharides. Part 19. [1] 1 , 1999 .

[31]  W. Saenger,et al.  Topography of cyclodextrin inclusion complexes. 15. Crystal and molecular structure of the cyclohexaamylose-7.57 water complex, form III. Four- and six-membered circular hydrogen bonds , 1981 .

[32]  J. F. Stoddart,et al.  Synthetic Cyclic Oligosaccharides. , 1998, Chemical reviews.

[33]  F. Lichtenthaler 100 Years “Schlüssel‐Schloss‐Prinzip”: What Made Emil Fischer Use this Analogy? , 1995 .