A theoretical—information study on the electron delocalization (aromaticity) of annulenes with and without bond alternation

Abstract Using the recently developed theoretical—information approach to electron delocalization (aromaticity) within the HMO approximation, analytical expressions have been obtained for the information content (aromaticity index) of 4 n and (4 n + 2) annulenes with and without bond alternation. The information function proves to be sensitive to the size and symmetry of annulenes, reflecting correctly the aromatic, antiaromatic and non-aromatic behaviour of the various annulenes. A high correlation is found between the information index and other aromaticity indices such as the Hess and Shaad resonance energy, the topological resonance energy of Trinajstic and Aihara, the Dewar resonance energy, etc., as well as with the Sondheimer rate constants for the formation of annulenes.

[1]  I. Gutman,et al.  Graph theory and molecular orbitals. 19. Nonparametric resonance energies of arbitrary conjugated systems , 1977 .

[2]  L. J. Schaad,et al.  Hueckel molecular orbital .pi. resonance energies. New approach , 1971 .

[3]  J. Aihara Resonance Energies of Annulenes and Radialenes , 1975 .

[4]  L. J. Schaad,et al.  Hueckel molecular orbital .pi.-resonance energies. Heterocycles containing divalent sulfur , 1973 .

[5]  Nenad Trinajstić,et al.  Application of topological indices to gas chromatographic data: caclculation of the retention indices of isomeric alkylbenzens , 1979 .

[6]  O. Polansky,et al.  Zur Clar'schen Theorie Lokaler Benzoider Gebiete in Kondensierten Aromaten , 1967 .

[7]  J. Aihara A new definition of Dewar-type resonance energies , 1976 .

[8]  M. Randic On the characterization of local aromatic properties in benzenoid hydrocarbons , 1974 .

[9]  R. Haddon Unified theory of resonance energies, ring currents, and aromatic character in the (4n + 2).pi.-electron annulenes , 1979 .

[10]  Michael J. S. Dewar,et al.  Ground states of conjugated molecules. XI. Improved treatment of hydrocarbons , 1969 .

[11]  F. Sondheimer,et al.  A reactivity criterion of aromaticity and antiaromaticity in macrocyclic annulenes , 1976 .

[12]  N. Colin Baird,et al.  Quantum organic photochemistry. II. Resonance and aromaticity in the lowest 3.pi..pi.* state of cyclic hydrocarbons , 1972 .

[13]  H. Figeys Quantum-chemical studies on the aromaticity of conjugated systems—II : Aromatic and anti-aromatic annulenes: The (4n + 2)-π electron rule☆ , 1970 .

[14]  M. L. Ellzey,et al.  Resonance theory. V. Resonance energies of benzenoid and nonbenzenoid .pi. systems , 1974 .

[15]  N. Trinajstic,et al.  Information theory, distance matrix, and molecular branching , 1977 .

[16]  Nenad Trinajstić,et al.  Chemical graph theory: Modeling the thermodynamic properties of molecules , 1980 .

[17]  J. Aihara Aromaticity-Based Theory of Pericyclic Reactions , 1978 .

[18]  J. Aihara On the Additivity of π-Bond Energies in Linear Polyenes , 1974 .

[19]  Venelin Enchev,et al.  A Theoretical Information Approach to Ring and Total Aromaticity in Ground and Excited States , 1980 .

[20]  N. Trinajstic,et al.  Topological Resonance Energies of Conjugated Structures , 1980 .