Hierarchically Ordered Topographic Patterns via Plasmonic Mask Photolithography

[1]  C. Ross,et al.  Templated Self‐Assembly of Block Copolymers: Top‐Down Helps Bottom‐Up , 2006 .

[2]  E. Thomas,et al.  Block Copolymer Nanocomposites: Perspectives for Tailored Functional Materials , 2005, Advanced materials.

[3]  David A. Schultz,et al.  Plasmon resonant particles for biological detection. , 2003, Current opinion in biotechnology.

[4]  R. Lennox,et al.  Surface Plasmon Resonance of Gold Nanoparticle Arrays Partially Embedded in Quartz Substrates , 2007 .

[5]  C. Murphy,et al.  Surfactant-Directed Synthesis and Optical Properties of One-Dimensional Plasmonic Metallic Nanostructures , 2005 .

[6]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[7]  Henry I. Smith,et al.  Fabrication of nanostructures with long-range order using block copolymer lithography , 2002 .

[8]  E. Thomas,et al.  Optical Properties of Polymer-Based Photonic Nanocomposite Materials , 2003 .

[9]  A. Friesem,et al.  Holographic recording and all-optical modulation in photochromic polymers. , 1993, Optics letters.

[10]  Arto V. Nurmikko,et al.  Strongly Interacting Plasmon Nanoparticle Pairs: From Dipole−Dipole Interaction to Conductively Coupled Regime , 2004 .

[11]  Li-Jing Cheng,et al.  Nanoscale protein patterning by imprint lithography , 2004 .

[12]  H. J. Lee,et al.  Deep subwavelength nanolithography using localized surface plasmon modes on planar silver mask , 2005 .

[13]  Jongseung Yoon,et al.  Enabling nanotechnology with self assembled block copolymer patterns , 2003 .

[14]  Dennis M. Sullivan,et al.  A simplified PML for use with the FDTD method , 1996 .

[15]  Vladimir V Tsukruk,et al.  Mechanically tunable three-dimensional elastomeric network/air structures via interference lithography. , 2006, Nano letters.

[16]  R. Blaikie,et al.  Sub-diffraction-limited patterning using evanescent near-field optical lithography , 1999 .

[17]  Mark L. Brongersma,et al.  Plasmonics: the next chip-scale technology , 2006 .

[18]  C. Ross,et al.  Templated Self‐Assembly of Block Copolymers: Effect of Substrate Topography , 2003 .

[19]  Xiang Zhang,et al.  Surface plasmon interference nanolithography. , 2005, Nano letters.

[20]  Xiangang Luo,et al.  Surface plasmon resonant interference nanolithography technique , 2004 .

[21]  G. Chumanov,et al.  Coupled planar silver nanoparticle arrays as refractive index sensors , 2006 .

[22]  E. Thomas,et al.  The effect of surface constraints on the ordering of block copolymer domains , 1988 .

[23]  Edwin L. Thomas,et al.  Monolayer films of diblock copolymer microdomains for nanolithographic applications , 1995, Journal of Materials Science.

[24]  L. Leibler,et al.  Block copolymers in tomorrow's plastics , 2005, Nature materials.

[25]  Min-Gon Kim,et al.  Protein micropatterning on bifunctional organic-inorganic sol-gel hybrid materials. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[26]  Marcus Textor,et al.  A Combined Photolithographic and Molecular‐Assembly Approach to Produce Functional Micropatterns for Applications in the Biosciences , 2004 .

[27]  Marcus Textor,et al.  A Novel Approach to Produce Protein Nanopatterns by Combining Nanoimprint Lithography and Molecular Self-Assembly , 2004 .

[28]  J. Spatz,et al.  Block Copolymer Micelle Nanolithography , 2003 .

[29]  Joel K. W. Yang,et al.  Graphoepitaxy of Self-Assembled Block Copolymers on Two-Dimensional Periodic Patterned Templates , 2008, Science.

[30]  R. Blaikie,et al.  Evanescent interferometric lithography. , 2001, Applied Optics.

[31]  D. Shao,et al.  Surface-plasmon-assisted nanoscale photolithography by polarized light , 2005 .