PRIMUS: THE RELATIONSHIP BETWEEN STAR FORMATION AND AGN ACCRETION

We study the evidence for a connection between active galactic nuclei (AGNs) fueling and star formation by investigating the relationship between the X-ray luminosities of AGNs and the star formation rates (SFRs) of their host galaxies. We identify a sample of 309 AGNs with 10 41 < L X < 10 44 ?> erg s−1 at 0.2 < z < 1.2 ?> in the PRIMUS redshift survey. We find AGNs in galaxies with a wide range of SFR at a given LX. We do not find a significant correlation between SFR and the observed instantaneous LX for star-forming AGN host galaxies. However, there is a weak but significant correlation between the mean LX and SFR of detected AGNs in star-forming galaxies, which likely reflects that LX varies on shorter timescales than SFR. We find no correlation between stellar mass and LX within the AGN population. Within both populations of star-forming and quiescent galaxies, we find a similar power-law distribution in the probability of hosting an AGN as a function of specific accretion rate. Furthermore, at a given stellar mass, we find a star-forming galaxy ∼2–3 more likely than a quiescent galaxy to host an AGN of a given specific accretion rate. The probability of a galaxy hosting an AGN is constant across the main sequence of star formation. These results indicate that there is an underlying connection between star formation and the presence of AGNs, but AGNs are often hosted by quiescent galaxies.

[1]  H. Schmitt,et al.  AN OPTICALLY OBSCURED AGN IN A LOW MASS, IRREGULAR DWARF GALAXY: A MULTI-WAVELENGTH ANALYSIS OF J1329+3234 , 2014, 1412.6709.

[2]  G. Barro,et al.  Higher prevalence of X-ray selected AGN in intermediate-age galaxies up to z ̃ 1 , 2014, 1404.2056.

[3]  M. Salvato,et al.  Investigating evidence for different black hole accretion modes since redshift z ̃ 1 , 2014, 1402.2277.

[4]  O. Shemmer,et al.  STAR FORMATION AND BLACK HOLE GROWTH AT z ≃ 4.8 , 2013, 1308.0012.

[5]  J. Greene,et al.  DWARF GALAXIES WITH OPTICAL SIGNATURES OF ACTIVE MASSIVE BLACK HOLES , 2013, 1308.0328.

[6]  A. Goulding,et al.  BLACK HOLE VARIABILITY AND THE STAR FORMATION–ACTIVE GALACTIC NUCLEUS CONNECTION: DO ALL STAR-FORMING GALAXIES HOST AN ACTIVE GALACTIC NUCLEUS? , 2013, 1306.3218.

[7]  M. Brodwin,et al.  A CORRELATION BETWEEN STAR FORMATION RATE AND AVERAGE BLACK HOLE ACCRETION IN STAR-FORMING GALAXIES , 2013, Proceedings of the International Astronomical Union.

[8]  M. Blanton,et al.  THE PRISM MULTI-OBJECT SURVEY (PRIMUS). II. DATA REDUCTION AND REDSHIFT FITTING , 2013, 1303.2672.

[9]  M. Blanton,et al.  PRIMUS: INFRARED AND X-RAY AGN SELECTION TECHNIQUES AT 0.2 < z < 1.2 , 2013, 1302.2920.

[10]  W. Brandt,et al.  NUCLEAR ACTIVITY IS MORE PREVALENT IN STAR-FORMING GALAXIES , 2013, 1302.1202.

[11]  M. Blanton,et al.  PRIMUS: AN OBSERVATIONALLY MOTIVATED MODEL TO CONNECT THE EVOLUTION OF THE ACTIVE GALACTIC NUCLEUS AND GALAXY POPULATIONS OUT TO z ∼ 1 , 2013, 1301.1689.

[12]  M. Blanton,et al.  PRIMUS: CONSTRAINTS ON STAR FORMATION QUENCHING AND GALAXY MERGING, AND THE EVOLUTION OF THE STELLAR MASS FUNCTION FROM z = 0–1 , 2013, 1301.1688.

[13]  J. Dunlop,et al.  Star formation in luminous quasar host galaxies at z=1-2 , 2012, 1208.4143.

[14]  B. Altieri,et al.  NO CLEAR SUBMILLIMETER SIGNATURE OF SUPPRESSED STAR FORMATION AMONG X-RAY LUMINOUS ACTIVE GALACTIC NUCLEI , 2012, The Astrophysical Journal.

[15]  G. Zamorani,et al.  Accreting supermassive black holes in the COSMOS field and the connection to their host galaxies , 2012, 1209.1640.

[16]  D. Elbaz,et al.  GOODS-Herschel: ultra-deep XMM-Newton observations reveal AGN/star-formation connection , 2012, 1207.7129.

[17]  Stuart Lynn,et al.  THE HISTORY AND ENVIRONMENT OF A FADED QUASAR: HUBBLE SPACE TELESCOPE OBSERVATIONS OF HANNY'S VOORWERP AND IC 2497 , 2012, 1206.3797.

[18]  E. N. Dubois,et al.  The suppression of star formation by powerful active galactic nuclei , 2012, Nature.

[19]  D. Elbaz,et al.  THE HIDDEN “AGN MAIN SEQUENCE”: EVIDENCE FOR A UNIVERSAL BLACK HOLE ACCRETION TO STAR FORMATION RATE RATIO SINCE z ∼ 2 PRODUCING AN MBH–M* RELATION , 2012, 1204.2824.

[20]  A. Cimatti,et al.  The mean star formation rate of X-ray selected active galaxies and its evolution from z~2.5: results from PEP-Herschel , 2012, 1203.6069.

[21]  B. Hoyle,et al.  The XMM Cluster Survey: the interplay between the brightest cluster galaxy and the intracluster medium via AGN feedback , 2012, 1202.3787.

[22]  A. Cimatti,et al.  Enhanced star formation rates in AGN hosts with respect to inactive galaxies from PEP-Herschel observations , 2012, 1201.4394.

[23]  D. Alexander,et al.  What drives the growth of black holes , 2011, 1112.1949.

[24]  D. Elbaz,et al.  GOODS-HERSCHEL AND CANDELS: THE MORPHOLOGIES OF ULTRALUMINOUS INFRARED GALAXIES AT z ∼ 2 , 2011, 1110.4057.

[25]  M. Blanton,et al.  PRIMUS: THE DEPENDENCE OF AGN ACCRETION ON HOST STELLAR MASS AND COLOR , 2011, 1107.4368.

[26]  A. Diamond-Stanic,et al.  THE RELATIONSHIP BETWEEN BLACK HOLE GROWTH AND STAR FORMATION IN SEYFERT GALAXIES , 2011, 1106.3565.

[27]  A. M. Swinbank,et al.  The LABOCA survey of the Extended Chandra Deep Field-South: clustering of submillimetre galaxies , 2011, 1112.0321.

[28]  Stuart Lynn,et al.  The Galaxy Zoo survey for giant AGN-ionized clouds: past and present black hole accretion events , 2011, 1110.6921.

[29]  Kirpal Nandra,et al.  CANDELS: CONSTRAINING THE AGN–MERGER CONNECTION WITH HOST MORPHOLOGIES AT z ∼ 2 , 2011, 1109.2588.

[30]  I. P'erez-Fournon,et al.  Herschel/HerMES: the X-ray-infrared correlation for star-forming galaxies at z∼1 , 2011, 1107.1373.

[31]  B. Magnelli,et al.  PACS Evolutionary Probe (PEP) – a Herschel key program , 2011, 1106.3285.

[32]  A. Cimatti,et al.  Building the cosmic infrared background brick by brick with Herschel/PEP. ⋆ , 2011, 1106.3070.

[33]  V. Wild,et al.  Empirical determination of the shape of dust attenuation curves in star-forming galaxies , 2011, 1106.1646.

[34]  S. Veilleux,et al.  C-GOALS: Chandra observations of a complete sample of luminous infrared galaxies from the IRAS Revised Bright Galaxy Survey , 2011, 1103.2755.

[35]  A. Georgakakis,et al.  A serendipitous XMM survey of the SDSS: the evolution of the colour–magnitude diagram of X-ray AGN from z= 0.8 to 0.1 , 2011, 1101.4943.

[36]  M. E. Cornell,et al.  Supermassive black holes do not correlate with galaxy disks or pseudobulges , 2011, Nature.

[37]  J. Moustakas,et al.  AEGIS: THE MORPHOLOGIES OF GREEN GALAXIES AT 0.4 < z < 1.2 , 2011, 1101.3353.

[38]  C. Brogan,et al.  Low-mass black holes as the remnants of primordial black hole formation , 2012, Nature Communications.

[39]  K. Schawinski,et al.  HST WFC3/IR OBSERVATIONS OF ACTIVE GALACTIC NUCLEUS HOST GALAXIES AT z ∼ 2: SUPERMASSIVE BLACK HOLES GROW IN DISK GALAXIES , 2010, 1012.1855.

[40]  Ewan Cameron,et al.  On the Estimation of Confidence Intervals for Binomial Population Proportions in Astronomy: The Simplicity and Superiority of the Bayesian Approach , 2010, Publications of the Astronomical Society of Australia.

[41]  H. Rix,et al.  THE STAR FORMATION HISTORY OF MASS-SELECTED GALAXIES IN THE COSMOS FIELD , 2010, 1011.6370.

[42]  M. Blanton,et al.  THE PRISM MULTI-OBJECT SURVEY (PRIMUS). I. SURVEY OVERVIEW AND CHARACTERISTICS , 2010, 1011.4307.

[43]  K. Jahnke,et al.  THE NON-CAUSAL ORIGIN OF THE BLACK-HOLE–GALAXY SCALING RELATIONS , 2010, 1006.0482.

[44]  K. Schawinski,et al.  DUST-CORRECTED COLORS REVEAL BIMODALITY IN THE HOST-GALAXY COLORS OF ACTIVE GALACTIC NUCLEI AT z ∼ 1 , 2010, 1008.2971.

[45]  D. M. Alexander,et al.  COLOR–MAGNITUDE RELATIONS OF ACTIVE AND NON-ACTIVE GALAXIES IN THE CHANDRA DEEP FIELDS: HIGH-REDSHIFT CONSTRAINTS AND STELLAR-MASS SELECTION EFFECTS , 2010, 1007.1453.

[46]  D. Thompson,et al.  A MULTIWAVELENGTH STUDY OF A SAMPLE OF 70 μm SELECTED GALAXIES IN THE COSMOS FIELD. II. THE ROLE OF MERGERS IN GALAXY EVOLUTION , 2010, 1006.4956.

[47]  D. Elbaz,et al.  DIFFERENT STAR FORMATION LAWS FOR DISKS VERSUS STARBURSTS AT LOW AND HIGH REDSHIFTS , 2010, 1003.3889.

[48]  R. J. Assef,et al.  THE MID-IR- AND X-RAY-SELECTED QSO LUMINOSITY FUNCTION , 2010, 1001.4529.

[49]  C. Lintott,et al.  GALAXY ZOO: THE FUNDAMENTALLY DIFFERENT CO-EVOLUTION OF SUPERMASSIVE BLACK HOLES AND THEIR EARLY- AND LATE-TYPE HOST GALAXIES , 2010, 1001.3141.

[50]  A. M. Swinbank,et al.  Gas, dust and stars in the SCUBA galaxy, SMM J02399−0136: the EVLA reveals a colossal galactic nursery , 2009, 0912.1591.

[51]  J. Gunn,et al.  THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING. III. MODEL CALIBRATION, COMPARISON, AND EVALUATION , 2009, 0911.3151.

[52]  M. L. N. Ashby,et al.  The evolution of the hard X-ray luminosity function of AGN , 2009, 0910.1141.

[53]  T. Wong,et al.  ON THE TIMESCALE FOR STAR FORMATION IN GALAXIES , 2009, 0909.2243.

[54]  G. Rieke,et al.  ROLE OF GALAXY MERGERS IN COSMIC STAR FORMATION HISTORY , 2009, 0903.3035.

[55]  Takamitsu Miyaji,et al.  THE CHANDRA COSMOS SURVEY. I. OVERVIEW AND POINT SOURCE CATALOG , 2009, 0903.2062.

[56]  B. Weiner,et al.  AEGIS: THE CLUSTERING OF X-RAY ACTIVE GALACTIC NUCLEUS RELATIVE TO GALAXIES AT z ∼ 1 , 2009, 0902.0363.

[57]  Michael E. Anderson,et al.  HOST GALAXIES, CLUSTERING, EDDINGTON RATIOS, AND EVOLUTION OF RADIO, X-RAY, AND INFRARED-SELECTED AGNs , 2009, 0901.4121.

[58]  B. Garilli,et al.  THE ENVIRONMENTS OF ACTIVE GALACTIC NUCLEI WITHIN THE zCOSMOS DENSITY FIELD , 2008, 0812.3402.

[59]  Timothy M. Heckman,et al.  Feast and Famine: regulation of black hole growth in low-redshift galaxies , 2008, 0812.1224.

[60]  J. Gunn,et al.  THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING I: THE RELEVANCE OF UNCERTAIN ASPECTS OF STELLAR EVOLUTION AND THE IMF TO THE DERIVED PHYSICAL PR , 2022 .

[61]  A. Georgakakis,et al.  AEGIS-X: THE CHANDRA DEEP SURVEY OF THE EXTENDED GROTH STRIP , 2008, 0809.1349.

[62]  P. Hopkins,et al.  A semi-analytic model for the co-evolution of galaxies, black holes and active galactic nuclei , 2008, 0808.1227.

[63]  Jacobo Ebrero,et al.  The Subaru/XMM-Newton Deep Survey (SXDS). III. X-Ray Data , 2008, 0806.2846.

[64]  I. Smail,et al.  THE CHANDRA DEEP FIELD-SOUTH SURVEY: 4 Ms SOURCE CATALOGS , 2008, 0806.3968.

[65]  C. Peng How Mergers May Affect the Mass Scaling Relation between Gravitationally Bound Systems , 2007 .

[66]  H. Tananbaum,et al.  The Luminosity Function of X-Ray-selected Active Galactic Nuclei: Evolution of Supermassive Black Holes at High Redshift , 2007, 0710.2461.

[67]  J. Starck,et al.  The reversal of the star formation-density relation in the distant universe , 2007, astro-ph/0703653.

[68]  Columbia,et al.  Star Formation in AEGIS Field Galaxies since z = 1.1: The Dominance of Gradually Declining Star Formation, and the Main Sequence of Star-forming Galaxies , 2007, astro-ph/0701924.

[69]  D. Thompson,et al.  The XMM-Newton Wide-Field Survey in the COSMOS Field. III. Optical Identification and Multiwavelength Properties of a Large Sample of X-Ray-Selected Sources , 2006, astro-ph/0612358.

[70]  J. Newman,et al.  AEGIS: The Color-Magnitude Relation for X-Ray-selected Active Galactic Nuclei , 2006, astro-ph/0607270.

[71]  G. Richards,et al.  An Observational Determination of the Bolometric Quasar Luminosity Function , 2006, astro-ph/0605678.

[72]  S. Paltani,et al.  The XMM-Newton Wide-Field Survey in the COSMOS Field. I. Survey Description , 2006, astro-ph/0612311.

[73]  G. Kauffmann,et al.  The host galaxies of AGN in the Sloan Digital Sky Survey , 2006 .

[74]  G. Zamorani,et al.  The XMM-Newton survey of the ELAIS-S1 field. I. Number counts, angular correlation function and X-ra , 2006, astro-ph/0607107.

[75]  P. Hopkins,et al.  The Relation between Quasar and Merging Galaxy Luminosity Functions and the Merger-driven Star Formation History of the Universe , 2006, astro-ph/0602290.

[76]  R. Somerville,et al.  THE RELATION BETWEEN QUASAR AND MERGING GALAXY LUMINOSITY FUNCTIONS AND THE MERGER-INDUCED STAR FORMATION RATE OF THE UNIVERSE , 2006 .

[77]  D. M. Alexander,et al.  The Extended Chandra Deep Field-South Survey: Chandra Point-Source Catalogs , 2005, astro-ph/0506607.

[78]  H. Rix,et al.  Toward an Understanding of the Rapid Decline of the Cosmic Star Formation Rate , 2005, astro-ph/0502246.

[79]  T. D. Matteo,et al.  Energy input from quasars regulates the growth and activity of black holes and their host galaxies , 2005, Nature.

[80]  L. Ho,et al.  POX 52: A Dwarf Seyfert 1 Galaxy with an Intermediate-Mass Black Hole , 2004, astro-ph/0402110.

[81]  R. Nichol,et al.  Quantifying the Bimodal Color-Magnitude Distribution of Galaxies , 2003, astro-ph/0309710.

[82]  W. Percival,et al.  The host galaxies of luminous quasars , 2003, astro-ph/0308436.

[83]  Timothy M. Heckman,et al.  The host galaxies of active galactic nuclei , 2003 .

[84]  A. Treves,et al.  Host Galaxies of Low-z Radio-loud Quasars: A Search of Hubble Space Telescope Archives , 2003, astro-ph/0307043.

[85]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[86]  A. Marconi,et al.  The Relation between Black Hole Mass, Bulge Mass, and Near-Infrared Luminosity , 2003, astro-ph/0304274.

[87]  E. Bell,et al.  The Optical and Near-Infrared Properties of Galaxies. I. Luminosity and Stellar Mass Functions , 2003, astro-ph/0302543.

[88]  Garching,et al.  A deep VLA survey at 6 cm in the Lockman Hole , 2002, astro-ph/0211625.

[89]  A. Comastri,et al.  The 2-10 keV luminosity as a Star Formation Rate indicator , 2002, astro-ph/0202241.

[90]  J. Dunlop,et al.  Quasars, their host galaxies and their central black holes , 2001, astro-ph/0108397.

[91]  R. Nichol,et al.  The Galaxy Luminosity Function and Luminosity Density at Redshift z = 0.1 , 2002, astro-ph/0210215.

[92]  G. Canalizo,et al.  Quasi-Stellar Objects, Ultraluminous Infrared Galaxies, and Mergers , 2001, astro-ph/0103332.

[93]  T. Miyaji,et al.  Soft X-ray AGN Luminosity Function from ROSAT Surveys II. Table of the binned Soft X-ray Luminosity Function , 2001, astro-ph/0101279.

[94]  D. Schade,et al.  Hubble Space Telescope observations of X-ray-selected active galactic nuclei , 2000 .

[95]  Ralf Bender,et al.  A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion , 2000, astro-ph/0006289.

[96]  D. Merritt,et al.  A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.

[97]  S. M. Fall,et al.  A Simple Model for the Absorption of Starlight by Dust in Galaxies , 2000, astro-ph/0003128.

[98]  L. Ho,et al.  The Nuclear Spectral Energy Distribution of NGC 4395, the Least Luminous Type 1 Seyfert Galaxy , 1999, astro-ph/9904383.

[99]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[100]  S. Tremaine,et al.  The Demography of Massive Dark Objects in Galaxy Centers , 1997, astro-ph/9708072.

[101]  R. Terlevich,et al.  The cosmological evolution of the QSO luminosity density and of the star formation rate , 1997, astro-ph/9710134.

[102]  C. Megan Urry,et al.  VARIABILITY OF ACTIVE GALACTIC NUCLEI , 1997 .

[103]  D. Sanders,et al.  LUMINOUS INFRARED GALAXIES , 1996 .

[104]  John Kormendy,et al.  Inward Bound—The Search for Supermassive Black Holes in Galactic Nuclei , 1995 .

[105]  Robert Antonucci,et al.  Unified models for active galactic nuclei and quasars , 1993 .

[106]  Will Saunders,et al.  On the likelihood ratio for source identification. , 1992 .

[107]  N. Gehrels Confidence limits for small numbers of events in astrophysical data , 1986 .

[108]  C. K. Seyfert Nuclear Emission in Spiral Nebulae. , 1943 .