Activation of metal–organic framework materials

Crystalline metal–organic frameworks (MOFs) have emerged as a highly desirable class of solid-state materials. Some of their most attractive features include exceptionally high porosities as well as surface areas. A key aspect to the realization of high porosity is the removal of guest molecules from the framework while still maintaining its structural integrity (i.e., “activation”). This contribution highlights the strategies utilized to date for activating MOFs, including: (i) conventional heating and vacuum; (ii) solvent-exchange; (iii) supercritical CO2 (scCO2) exchange; (iv) freeze-drying; and (v) chemical treatment.

[1]  G. Wiederrecht,et al.  Light-harvesting and ultrafast energy migration in porphyrin-based metal-organic frameworks. , 2013, Journal of the American Chemical Society.

[2]  Bong Jin Hong,et al.  Light-harvesting metal-organic frameworks (MOFs): efficient strut-to-strut energy transfer in bodipy and porphyrin-based MOFs. , 2011, Journal of the American Chemical Society.

[3]  M. P. Suh,et al.  Control of interpenetration and gas-sorption properties of metal-organic frameworks by a simple change in ligand design. , 2012, Chemistry.

[4]  Dong Wook Kim,et al.  Synthesis of MOF having hydroxyl functional side groups and optimization of activation process for the maximization of its BET surface area , 2013 .

[5]  J. Hupp,et al.  Separating solids: purification of metal-organic framework materials. , 2008, Journal of the American Chemical Society.

[6]  C. Kepert,et al.  Zeolite-like crystal structure of an empty microporous molecular framework , 1999 .

[7]  Jian Zhang,et al.  Comparative study of activation methods on tuning gas sorption properties of a metal-organic framework with nanosized ligands. , 2012, Inorganic chemistry.

[8]  C. Wilmer,et al.  Large-scale screening of hypothetical metal-organic frameworks. , 2012, Nature chemistry.

[9]  Linhua Xie,et al.  Flexible metal-organic framework with hydrophobic pores. , 2011, Chemistry.

[10]  Mircea Dincă,et al.  Hydrogen storage in metal-organic frameworks. , 2009, Chemical Society reviews.

[11]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.

[12]  G. Jameson,et al.  Photolabile protecting groups in metal-organic frameworks: preventing interpenetration and masking functional groups. , 2012, Chemical communications.

[13]  Gérard Férey,et al.  Metal-organic frameworks in biomedicine. , 2012, Chemical reviews.

[14]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[15]  Hong-Cai Zhou,et al.  Methane storage in advanced porous materials. , 2012, Chemical Society reviews.

[16]  C. Wilmer,et al.  Simultaneously high gravimetric and volumetric methane uptake characteristics of the metal-organic framework NU-111. , 2013, Chemical communications.

[17]  Sean Parkin,et al.  Framework-catenation isomerism in metal-organic frameworks and its impact on hydrogen uptake. , 2007, Journal of the American Chemical Society.

[18]  M. Fröba,et al.  Highly porous metal-organic framework containing a novel organosilicon linker--a promising material for hydrogen storage. , 2009, Inorganic chemistry.

[19]  S. Krause,et al.  A highly porous metal-organic framework, constructed from a cuboctahedral super-molecular building block, with exceptionally high methane uptake. , 2012, Chemical communications.

[20]  M. P. Suh,et al.  Silver(I)−Polynitrile Network Solids for Anion Exchange: Anion-Induced Transformation of Supramolecular Structure in the Crystalline State , 2000 .

[21]  S. Kitagawa,et al.  Ion conductivity and transport by porous coordination polymers and metal-organic frameworks. , 2013, Accounts of chemical research.

[22]  Michael J. Zaworotko,et al.  Supermolecular building blocks (SBBs) for the design and synthesis of highly porous metal-organic frameworks. , 2008, Journal of the American Chemical Society.

[23]  Michael O'Keeffe,et al.  High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture , 2008, Science.

[24]  M. P. Suh,et al.  Magnesium nanocrystals embedded in a metal-organic framework: hybrid hydrogen storage with synergistic effect on physi- and chemisorption. , 2012, Angewandte Chemie.

[25]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[26]  Omar K Farha,et al.  Metal-organic framework materials as chemical sensors. , 2012, Chemical reviews.

[27]  Dawei Feng,et al.  Zirconium-metalloporphyrin PCN-222: mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. , 2012, Angewandte Chemie.

[28]  Wenbin Lin,et al.  Enantioselective catalysis with homochiral metal-organic frameworks. , 2009, Chemical Society reviews.

[29]  Porosity in metal–organic frameworks following thermolytic postsynthetic deprotection: gas sorption, dye uptake and covalent derivatisation , 2012 .

[30]  R. Robson,et al.  Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and Cu , 1990 .

[31]  Geoffrey I N Waterhouse,et al.  A general thermolabile protecting group strategy for organocatalytic metal-organic frameworks. , 2011, Journal of the American Chemical Society.

[32]  Mamata Mukhopadhyay,et al.  Extraction and processing with supercritical fluids , 2009 .

[33]  M. Peruzzini,et al.  Hydrogen uptake by {H[Mg(HCOO)3]⊃NHMe2}∞ and determination of its H2 adsorption sites through Monte Carlo simulations. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[34]  M. P. Suh,et al.  A highly porous metal-organic framework: structural transformations of a guest-free MOF depending on activation method and temperature. , 2011, Chemistry.

[35]  Hong-Cai Zhou,et al.  Interpenetration control in metal–organic frameworks for functional applications , 2013 .

[36]  A. Cooper Porous Materials and Supercritical Fluids , 2003 .

[37]  U. Mueller,et al.  A family of 2D and 3D coordination polymers involving a trigonal tritopic linker. , 2012, Dalton transactions.

[38]  A. Matzger,et al.  Non-interpenetrated IRMOF-8: synthesis, activation, and gas sorption. , 2012, Chemical communications.

[39]  Omar K Farha,et al.  Rational design, synthesis, purification, and activation of metal-organic framework materials. , 2010, Accounts of chemical research.

[40]  Krista S. Walton,et al.  Strategies for Characterization of Large-Pore Metal-Organic Frameworks by Combined Experimental and Computational Methods , 2009 .

[41]  Duilio Cascio,et al.  Synthesis, structure, and metalation of two new highly porous zirconium metal-organic frameworks. , 2012, Inorganic chemistry.

[42]  K. Stylianou,et al.  A porous layered metal-organic framework from π–π-stacking of layers based on a Co6 building unit , 2012 .

[43]  Nathaniel L. Rosi,et al.  Stepwise ligand exchange for the preparation of a family of mesoporous MOFs. , 2013, Journal of the American Chemical Society.

[44]  M. Grzywa,et al.  [Cu4OCl6(DABCO)2]·0.5DABCO·4CH3OH (“MFU-5”): Modular synthesis of a zeolite-like metal-organic framework constructed from tetrahedral {Cu4OCl6} secondary building units and linear organic linkers , 2010 .

[45]  Omar K Farha,et al.  Metal-organic framework materials with ultrahigh surface areas: is the sky the limit? , 2012, Journal of the American Chemical Society.

[46]  Tony D. Keene,et al.  Laboratory-based separation techniques for insoluble compound mixtures: methods for the purification of metal-organic framework materials. , 2011, Dalton transactions.

[47]  S. Kitagawa,et al.  Soft porous crystals. , 2009, Nature chemistry.

[48]  M. P. Suh,et al.  Selective CO2 adsorption in a flexible non-interpenetrated metal-organic framework. , 2011, Chemical communications.

[49]  B. Han,et al.  Metal-organic framework nanospheres with well-ordered mesopores synthesized in an ionic liquid/CO2/surfactant system. , 2011, Angewandte Chemie.

[50]  Dan Zhao,et al.  Stabilization of metal-organic frameworks with high surface areas by the incorporation of mesocavities with microwindows. , 2009, Journal of the American Chemical Society.

[51]  B. Abrahams,et al.  Assembly of porphyrin building blocks into network structures with large channels , 1994, Nature.

[52]  C. Malliakas,et al.  A straight forward route for the development of metal-organic frameworks functionalized with aromatic -OH groups: synthesis, characterization, and gas (N2, Ar, H2, CO2, CH4, NH3) sorption properties. , 2013, Inorganic chemistry.

[53]  Dong Wook Kim,et al.  Synthesis of MOF having functional side group , 2011 .

[54]  J. F. Stoddart,et al.  Metal-organic frameworks with designed chiral recognition sites. , 2010, Chemical communications.

[55]  Dan Zhao,et al.  Introduction of cavities up to 4 nm into a hierarchically-assembled metal-organic framework using an angular, tetratopic ligand. , 2010, Chemical communications.

[56]  Omar K Farha,et al.  Control over catenation in metal-organic frameworks via rational design of the organic building block. , 2010, Journal of the American Chemical Society.

[57]  Omar K Farha,et al.  Designing higher surface area metal-organic frameworks: are triple bonds better than phenyls? , 2012, Journal of the American Chemical Society.

[58]  Randall Q. Snurr,et al.  Ultrahigh Porosity in Metal-Organic Frameworks , 2010, Science.

[59]  M. Eddaoudi,et al.  Temperature and concentration control over interpenetration in a metal-organic material. , 2009, Journal of the American Chemical Society.

[60]  David Fairen-Jimenez,et al.  Vapor-phase metalation by atomic layer deposition in a metal-organic framework. , 2013, Journal of the American Chemical Society.

[61]  A. Matzger,et al.  Exceptional surface area from coordination copolymers derived from two linear linkers of differing lengths , 2012 .

[62]  M. Allendorf,et al.  Complete Series of Monohalogenated Isoreticular Metal–Organic Frameworks: Synthesis and the Importance of Activation Method , 2011 .

[63]  S. Kaskel,et al.  Adsorptive capturing and storing greenhouse gases such as sulfur hexafluoride and carbon tetrafluoride using metal–organic frameworks , 2012 .

[64]  M. Eddaoudi,et al.  Stepwise transformation of the molecular building blocks in a porphyrin-encapsulating metal-organic material. , 2013, Journal of the American Chemical Society.

[65]  Carlo Lamberti,et al.  A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. , 2008, Journal of the American Chemical Society.

[66]  Joanne I. Yeh,et al.  Metal-adeninate vertices for the construction of an exceptionally porous metal-organic framework , 2012, Nature Communications.

[67]  Omar K Farha,et al.  Supercritical processing as a route to high internal surface areas and permanent microporosity in metal-organic framework materials. , 2009, Journal of the American Chemical Society.

[68]  Wenchuan Wang,et al.  Facile preparation of high-capacity hydrogen storage metal-organic frameworks: A combination of microwave-assisted solvothermal synthesis and supercritical activation , 2010 .

[69]  H. Furukawa,et al.  A metal-organic framework with covalently bound organometallic complexes. , 2010, Journal of the American Chemical Society.

[70]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[71]  Wantai Yang,et al.  Lithium doping on metal-organic frameworks for enhancing H2 Storage , 2012 .

[72]  U. Mueller,et al.  A highly porous metal-organic framework with open nickel sites. , 2010, Angewandte Chemie.

[73]  Myoung Soo Lah,et al.  Post-Synthetic Modifications of Framework Metal Ions in Isostructural Metal–Organic Frameworks: Core–Shell Heterostructures via Selective Transmetalations , 2012 .

[74]  Dong Han,et al.  A non-interpenetrated porous metal-organic framework with high gas-uptake capacity. , 2011, Chemical communications.

[75]  J. Hupp,et al.  Control over Catenation in Pillared Paddlewheel Metal–Organic Framework Materials via Solvent-Assisted Linker Exchange , 2013 .

[76]  L. Sarkisov Accessible Surface Area of Porous Materials: Understanding Theoretical Limits , 2012, Advanced materials.

[77]  Martin R. Lohe,et al.  Metal-organic framework (MOF) aerogels with high micro- and macroporosity. , 2009, Chemical communications.

[78]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[79]  Hong-Cai Zhou,et al.  Metal-organic frameworks for separations. , 2012, Chemical reviews.

[80]  U. Mueller,et al.  Dye encapsulation inside a new mesoporous metal-organic framework for multifunctional solvatochromic-response function. , 2012, Chemistry.

[81]  H. Furukawa,et al.  Incorporation of active metal sites in MOFs via in situ generated ligand deficient metal-linker complexes. , 2011, Chemical communications.

[82]  U. Jeng,et al.  Structural Analysis and Thermal Behavior of Pore Networks in High-Surface-Area Metal−Organic Framework , 2010 .

[83]  Brian P. Mehl,et al.  Energy transfer dynamics in metal-organic frameworks. , 2010, Journal of the American Chemical Society.

[84]  J. F. Stoddart,et al.  Large-Pore Apertures in a Series of Metal-Organic Frameworks , 2012, Science.

[85]  L. Wojtas,et al.  Formation of a metalloporphyrin-based nanoreactor by postsynthetic metal-ion exchange of a polyhedral-cage containing a metal-metalloporphyrin framework. , 2013, Chemistry.

[86]  Randall Q. Snurr,et al.  Gram-scale, high-yield synthesis of a robust metal–organic framework for storing methane and other gases , 2013 .

[87]  G. Seifert,et al.  High-pressure in situ 129Xe NMR spectroscopy and computer simulations of breathing transitions in the metal-organic framework Ni2(2,6-ndc)2(dabco) (DUT-8(Ni)). , 2011, Journal of the American Chemical Society.

[88]  T. Groy,et al.  Establishing Microporosity in Open Metal−Organic Frameworks: Gas Sorption Isotherms for Zn(BDC) (BDC = 1,4-Benzenedicarboxylate) , 1998 .

[89]  Omar K Farha,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[90]  Alfred W. Francis,et al.  Ternary Systems of Liquid Carbon Dioxide , 1954 .

[91]  Abraham M. Shultz,et al.  Post-synthesis modification of a metal-organic framework to form metallosalen-containing MOF materials. , 2011, Journal of the American Chemical Society.

[92]  Wenbin Lin,et al.  Chirality-controlled and solvent-templated catenation isomerism in metal-organic frameworks. , 2008, Journal of the American Chemical Society.

[93]  Demin Liu,et al.  Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. , 2011, Accounts of chemical research.

[94]  A. Matzger,et al.  Reconciling the discrepancies between crystallographic porosity and guest access as exemplified by Zn-HKUST-1. , 2011, Journal of the American Chemical Society.

[95]  L. Wojtas,et al.  Vertex-directed self-assembly of a high symmetry supermolecular building block using a custom-designed porphyrin , 2012 .

[96]  Barbara L. Knutson,et al.  Supercritical fluids as solvents for chemical and materials processing , 1996, Nature.

[97]  F. Glorius,et al.  Selective Adsorption Properties of Cationic Metal–Organic Frameworks Based on Imidazolic Linker , 2013 .

[98]  Oliver Throl,et al.  High-throughput screening: speeding up porous materials discovery. , 2011, Chemical communications.

[99]  S. Nguyen,et al.  De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. , 2010, Nature chemistry.

[100]  O. Shekhah,et al.  Controlling interpenetration in metal-organic frameworks by liquid-phase epitaxy. , 2009, Nature materials.

[101]  M. O'keeffe,et al.  Design and synthesis of an exceptionally stable and highly porous metal-organic framework , 1999, Nature.

[102]  L. Wojtas,et al.  Quest for highly porous metal-metalloporphyrin framework based upon a custom-designed octatopic porphyrin ligand. , 2012, Chemical communications.

[103]  Martin R. Lohe,et al.  A highly porous flexible Metal-Organic Framework with corundum topology. , 2011, Chemical communications.

[104]  Abraham M. Shultz,et al.  Selective surface and near-surface modification of a noncatenated, catalytically active metal-organic framework material based on Mn(salen) struts. , 2011, Inorganic chemistry.