Influences of Gd3+ doping modification on the crystal microstructure and electrochemical performance of Li1.20[Mn0.52Ni0.20Co0.08]O2 as cathode for Lithium-ion batteries

[1]  N. Kitamura,et al.  Change of local structures for 0.5Li2MnO3–0.5LiMn1/3Ni1/3Co1/3O2 in first charge process of different rates , 2017, Journal of Materials Science.

[2]  H. Cui,et al.  Phase structure and electrochemical performance control of 0.5Li2MnO3⋅0.5LiNi1/3Co1/3Mn1/3O2 based on the concentration adjustment in a molten salt synthesis system , 2017, Journal of Applied Electrochemistry.

[3]  S. Lanceros‐Méndez,et al.  Synthesis and improved electrochemical performance of LiMn2 – xGdxO4 based cathodes , 2017 .

[4]  W. Yoon,et al.  Cerotic acid assisted sol-gel synthesis and electrochemical performance of double doped spinels (LiCrxMgyMn2-x-yO4) as cathode materials for lithium rechargeable batteries , 2016 .

[5]  F. Kang,et al.  Understanding the enhanced electrochemical performance of samarium substituted Li[Li0.2Mn0.54 − xSmxCo0.13Ni0.13]O2 cathode material for lithium ion batteries , 2016 .

[6]  Wei Liu,et al.  Influences of FeF3 coating layer on the electrochemical properties of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode materials for lithium-ion batteries , 2016 .

[7]  Yunbo Chen,et al.  Nanosized 0.3Li2MnO3·0.7LiNi1/3Mn1/3Co1/3O2 synthesized by CNTs-assisted hydrothermal method as cathode material for lithium ion battery , 2016, Journal of Applied Electrochemistry.

[8]  Longwei Yin,et al.  Enhanced cycling stability of Co3(PO4)2-coated LiMn2O4 cathode materials for lithium ion batteries , 2016 .

[9]  Yongming Zhu,et al.  Effect of pre-thermal treatment on the lithium storage performance of LiNi0.8Co0.15Al0.05O2 , 2016, Journal of Materials Science.

[10]  Ying Bai,et al.  Surface-modified Li[Li0.2Ni0.17Co0.07Mn0.56]O2 nanoparticles with MgF2 as cathode for Li-ion battery , 2015 .

[11]  L. Jiao,et al.  3D structural properties study on compact LiFePO4s based on X-ray computed tomography technique , 2015 .

[12]  Ruibing Yu,et al.  Investigation on the enhanced electrochemical performances of Li1.2Ni0.13Co0.13Mn0.54O2 by surface modification with ZnO , 2015 .

[13]  H. Wu,et al.  Cerium fluoride coated layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials with improved electrochemical performance for lithium ion batteries , 2014 .

[14]  Jin Xue,et al.  Excellent rate capability of Mg doped Li[Li0.2Ni0.13Co0.13Mn0.54]O2 cathode material for lithium-ion battery , 2014 .

[15]  Xueping Gao,et al.  PO43− polyanion-doping for stabilizing Li-rich layered oxides as cathode materials for advanced lithium-ion batteries , 2014 .

[16]  F. Kang,et al.  Enhanced oxygen reducibility of 0.5Li2MnO3·0.5LiNi1/3Co1/3Mn1/3O2 cathode material with mild acid treatment , 2014 .

[17]  D. Liao,et al.  Study on the preparation of LiCoO2 by multiphase redox method , 2014 .

[18]  Yongyao Xia,et al.  Degradation and Structural Evolution of xLi2MnO3·(1–x)LiMn1/3Ni1/3Co1/3O2 during Cycling , 2014 .

[19]  Tao Huang,et al.  CaF2-coated Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials for Li-ion batteries , 2013 .

[20]  Yunjian Liu,et al.  Improved electrochemical performance of Li1.2Ni0.2Mn0.6O2 cathode materials by ball milling and carbon coating , 2013 .

[21]  Baohua Li,et al.  Structural and electrochemical performance of layered high-Mn cathode materials Li1+n(NimComMn1−2m)O2 for lithium rechargeable batteries , 2013 .

[22]  Haijun Yu,et al.  High-Energy Cathode Materials (Li2MnO3-LiMO2) for Lithium-Ion Batteries. , 2013, The journal of physical chemistry letters.

[23]  Xunhui Xiong,et al.  Effect of fluorine on the electrochemical performance of spherical LiNi0.8Co0.1Mn0.1O2 cathode materials via a low temperature method , 2013 .

[24]  N. Sharma,et al.  High capacity spherical Li[Li0.24Mn0.55Co0.14Ni0.07]O2 cathode material for lithium ion batteries , 2013 .

[25]  Xunhui Xiong,et al.  Synthesis and electrochemical performance of xLi2MnO3·(1 − x)LiMn0.5Ni0.4Co0.1O2 for lithium ion battery , 2013 .

[26]  Xueping Gao,et al.  AlF3-coated Li(Li0.17Ni0.25Mn0.58)O2 as cathode material for Li-ion batteries , 2012 .

[27]  C. Delmas,et al.  Li1.20Mn0.54Co0.13Ni0.13O2 with Different Particle Sizes as Attractive Positive Electrode Materials for Lithium-Ion Batteries: Insights into Their Structure , 2012 .

[28]  J. Pinto,et al.  Improved High Rate Capacity and Lithium Diffusion Ability of LiNi1/3Co1/3Mn1/3O2 with Ordered Crystal Structure , 2012 .

[29]  K. Sohn,et al.  Gadolinium-Doped LiMn2O4 Cathodes in Li Ion Batteries: Understanding the Stabilized Structure and Enhanced Electrochemical Kinetics , 2012 .

[30]  Kevin G. Gallagher,et al.  Countering the Voltage Decay in High Capacity xLi2MnO3•(1–x)LiMO2 Electrodes (M=Mn, Ni, Co) for Li+-Ion Batteries , 2012 .

[31]  Zhixing Wang,et al.  Spray-drying synthesized LiNi0.6Co0.2Mn0.2O2 and its electrochemical performance as cathode materials for lithium ion batteries , 2011 .

[32]  L. J. Berchmans,et al.  Molten salt synthesis of LiGd0·01Mn1·99O4 using chloride–carbonate melt , 2011 .

[33]  A. Manthiram,et al.  Influence of Cationic Substitutions on the Oxygen Loss and Reversible Capacity of Lithium-Rich Layered Oxide Cathodes , 2011 .

[34]  Michael Holzapfel,et al.  Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. , 2006, Journal of the American Chemical Society.