Elliptic recurrence representation of the N=1 superconformal blocks in the Ramond sector

The structure of the 4-point N = 1 super-conformal blocks in the Ramond sector is analyzed. The elliptic recursion relations for these blocks are derived.

[1]  L. Hadasz,et al.  Conformal blocks related to the R-R states in the c-circumflex=1 superconformal field theories , 2008 .

[2]  L. Hadasz,et al.  Elliptic recurrence representation of the N=1 Neveu–Schwarz blocks , 2007, 0711.1619.

[3]  V. Belavin On the N=1 super Liouville four-point functions , 2007, 0705.1983.

[4]  V. Belavin,et al.  Bootstrap in Supersymmetric Liouville Field Theory , 2008 .

[5]  L. Hadasz,et al.  Conformal blocks related to the R-R states in the \hat c =1 SCFT , 2007, 0711.1618.

[6]  S. Fredenhagen,et al.  A common limit of super Liouville theory and minimal models , 2007, 0706.1650.

[7]  A. Belavin,et al.  Bootstrap in Supersymmetric Liouville Field Theory. I. NS Sector , 2007, hep-th/0703084.

[8]  V. Belavin N=1 supersymmetric conformal block recursion relations , 2006, hep-th/0611295.

[9]  L. Hadasz,et al.  Recursion representation of the Neveu-Schwarz superconformal block , 2006, hep-th/0611266.

[10]  Al.Zamolodchikov,et al.  Higher Equations of Motion in N = 1 SUSY Liouville Field Theory , 2006, hep-th/0610316.

[11]  A. Zamolodchikov,et al.  Higher equations of motion in the N = 1 SUSY Liouville field theory , 2006 .

[12]  L. Hadasz,et al.  Liouville theory and uniformization of four-punctured sphere , 2006, hep-th/0604187.

[13]  M. Piątek,et al.  Classical geometry from the quantum Liouville theory , 2005, hep-th/0504204.

[14]  I. Runkel,et al.  A non-rational CFT with c = 1 as a limit of minimal models , 2001, hep-th/0107118.

[15]  Matthias Doerrzapf Highest weight representations of the N=1 Ramond algebra , 1999, hep-th/9905150.

[16]  R. Poghossian Structure constants in the N = 1 super-Liouville field theory , 1997 .

[17]  M. Gaberdiel Fusion of twisted representations , 1996, hep-th/9607036.

[18]  Alexander M. Polyakov,et al.  Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory , 1996 .

[19]  A.B.Zamolodchikov,et al.  Structure Constants and Conformal Bootstrap in Liouville Field Theory , 1995, hep-th/9506136.

[20]  A. Zamolodchikov,et al.  Operator algebra in two-dimensional superconformal field theory , 1988 .

[21]  A. Zamolodchikov Conformal symmetry in two-dimensional space: Recursion representation of conformal block , 1987 .

[22]  A. Meurman,et al.  Highest weight representations of the Neveu-Schwarz and Ramond algebras , 1986 .

[23]  V. G. Knizhnik,et al.  Superconformal symmetry in two dimensions , 1985 .

[24]  S. Shenker,et al.  Superconformal invariance in two dimensions and the tricritical Ising model , 1985 .

[25]  A. Zamolodchikov Conformal symmetry in two dimensions: An explicit recurrence formula for the conformal partial wave amplitude , 1984 .