Elliptic recurrence representation of the N=1 superconformal blocks in the Ramond sector
暂无分享,去创建一个
[1] L. Hadasz,et al. Conformal blocks related to the R-R states in the c-circumflex=1 superconformal field theories , 2008 .
[2] L. Hadasz,et al. Elliptic recurrence representation of the N=1 Neveu–Schwarz blocks , 2007, 0711.1619.
[3] V. Belavin. On the N=1 super Liouville four-point functions , 2007, 0705.1983.
[4] V. Belavin,et al. Bootstrap in Supersymmetric Liouville Field Theory , 2008 .
[5] L. Hadasz,et al. Conformal blocks related to the R-R states in the \hat c =1 SCFT , 2007, 0711.1618.
[6] S. Fredenhagen,et al. A common limit of super Liouville theory and minimal models , 2007, 0706.1650.
[7] A. Belavin,et al. Bootstrap in Supersymmetric Liouville Field Theory. I. NS Sector , 2007, hep-th/0703084.
[8] V. Belavin. N=1 supersymmetric conformal block recursion relations , 2006, hep-th/0611295.
[9] L. Hadasz,et al. Recursion representation of the Neveu-Schwarz superconformal block , 2006, hep-th/0611266.
[10] Al.Zamolodchikov,et al. Higher Equations of Motion in N = 1 SUSY Liouville Field Theory , 2006, hep-th/0610316.
[11] A. Zamolodchikov,et al. Higher equations of motion in the N = 1 SUSY Liouville field theory , 2006 .
[12] L. Hadasz,et al. Liouville theory and uniformization of four-punctured sphere , 2006, hep-th/0604187.
[13] M. Piątek,et al. Classical geometry from the quantum Liouville theory , 2005, hep-th/0504204.
[14] I. Runkel,et al. A non-rational CFT with c = 1 as a limit of minimal models , 2001, hep-th/0107118.
[15] Matthias Doerrzapf. Highest weight representations of the N=1 Ramond algebra , 1999, hep-th/9905150.
[16] R. Poghossian. Structure constants in the N = 1 super-Liouville field theory , 1997 .
[17] M. Gaberdiel. Fusion of twisted representations , 1996, hep-th/9607036.
[18] Alexander M. Polyakov,et al. Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory , 1996 .
[19] A.B.Zamolodchikov,et al. Structure Constants and Conformal Bootstrap in Liouville Field Theory , 1995, hep-th/9506136.
[20] A. Zamolodchikov,et al. Operator algebra in two-dimensional superconformal field theory , 1988 .
[21] A. Zamolodchikov. Conformal symmetry in two-dimensional space: Recursion representation of conformal block , 1987 .
[22] A. Meurman,et al. Highest weight representations of the Neveu-Schwarz and Ramond algebras , 1986 .
[23] V. G. Knizhnik,et al. Superconformal symmetry in two dimensions , 1985 .
[24] S. Shenker,et al. Superconformal invariance in two dimensions and the tricritical Ising model , 1985 .
[25] A. Zamolodchikov. Conformal symmetry in two dimensions: An explicit recurrence formula for the conformal partial wave amplitude , 1984 .