On Extremal Properties of Graph Entropies

We study extremal properties of graph entropies based on so-called information functionals. We obtain som ee xtre mality results for the resulting graph entropies which rely on the well-known Shannon entropy. Also by applying these results, we infer some entropy bounds for certain graph classes. Further, conjectures to determine extremal values (maximum and minimum values) of the graph entropies graphs based on numerical results are given.

[1]  N. Trinajstic,et al.  Information theory, distance matrix, and molecular branching , 1977 .

[2]  F Emmert-Streib,et al.  Networks for systems biology: conceptual connection of data and function. , 2011, IET systems biology.

[3]  K. Varmuza,et al.  A Large Scale Analysis of Information-Theoretic Network Complexity Measures Using Chemical Structures , 2009, PloS one.

[4]  Hironori Hirata,et al.  Information theoretical analysis of ecological networks , 1984 .

[5]  Yaoyun Shi Entropy lower bounds for quantum decision tree complexity , 2002, Inf. Process. Lett..

[6]  Bo Zhou,et al.  Bounds on the Balaban Index , 2008 .

[7]  Antal Járai,et al.  On the measurable solution of a functional equation arising in information theory , 1979 .

[8]  Stephan Borgert,et al.  On Entropy-Based Molecular Descriptors: Statistical Analysis of Real and Synthetic Chemical Structures , 2009, J. Chem. Inf. Model..

[9]  A. Mowshowitz,et al.  Entropy and the complexity of graphs. I. An index of the relative complexity of a graph. , 1968, The Bulletin of mathematical biophysics.

[10]  Duncan J. Watts,et al.  The Structure and Dynamics of Networks: (Princeton Studies in Complexity) , 2006 .

[11]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[12]  Robert B. Ash,et al.  Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.

[13]  Matthias Dehmer,et al.  Network analysis using a novel highly discriminating topological index , 2011, Complex..

[14]  Matthias Dehmer,et al.  Information processing in complex networks: Graph entropy and information functionals , 2008, Appl. Math. Comput..

[15]  Fred Sobik,et al.  Operations on cognitive structures — their modeling on the basis of graph theory , 1994 .

[16]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[17]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[18]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[19]  Matthias Dehmer,et al.  Inequalities for entropy-based measures of network information content , 2010, Appl. Math. Comput..

[20]  A. Rényi On Measures of Entropy and Information , 1961 .

[21]  J. Aczel,et al.  On Measures of Information and Their Characterizations , 2012 .

[22]  H. Heuser Lehrbuch der Analysis , 2022 .

[23]  H. Wiener Structural determination of paraffin boiling points. , 1947, Journal of the American Chemical Society.

[24]  Sever S Dragomir,et al.  Some bounds on entropy measures in information theory , 1997 .

[25]  Mircea V. Diudea,et al.  Molecular Topology of Dendrimers , 1999 .

[26]  L. da F. Costa,et al.  Characterization of complex networks: A survey of measurements , 2005, cond-mat/0505185.

[27]  M. Randic Characterization of molecular branching , 1975 .

[28]  Danail Bonchev,et al.  Information theoretic indices for characterization of chemical structures , 1983 .

[29]  T. Papaioannou Information, Measures of , 2006 .

[30]  R. Jackson Inequalities , 2007, Algebra for Parents.

[31]  Hanyuan Deng,et al.  The (n,n)-graphs with the first three extremal Wiener indices , 2008 .

[32]  Harro Heuser,et al.  Lehrbuch der Analysis Teil 2 , 2004 .

[33]  R. K. Tuteja,et al.  Order α-β weighted information energy , 1992, Inf. Sci..

[34]  N. Trinajstic Xueliang Li, Ivan Gutman: Mathematical Aspects of Randić-type Molecular Structure Descriptors , 2006 .

[35]  Matthias Dehmer,et al.  Uniquely Discriminating Molecular Structures Using Novel Eigenvalue-Based Descriptors , 2012 .

[36]  Matthias Dehmer,et al.  A history of graph entropy measures , 2011, Inf. Sci..

[37]  Lin Yuan,et al.  Minimum entropy and information measure , 1998, IEEE Trans. Syst. Man Cybern. Part C.