Sensitivity analysis of the MAGFLOW Cellular Automaton model for lava flow simulation

MAGFLOW is a physics-based numerical model for lava flow simulations based on the Cellular Automaton approach that has been successfully used to predict the lava flow paths during the recent eruptions on Mt Etna. We carried out an extensive sensitivity analysis of the physical and rheological parameters that control the evolution function of the automaton and which are measured during eruptive events, in an effort to verify the reliability of the model and improve its applicability to scenario forecasting. The results obtained, which include Sobol' sensitivity indices computed using polynomial chaos expansion, confirm the consistency of MAGFLOW with the underlying physical model and identify water content and solidus temperature as critical parameters for the automaton. Additional tests also indicate that flux rates can have a strong influence on the emplacement of lava flows, and that to obtain more accurate simulations it is better to have continuous monitoring of the effusion rates, even if with moderate errors, rather than sparse accurate measurements.

[1]  K. Ishihara,et al.  Numerical Simulation of Lava Flows on Some Volcanoes in Japan , 1990 .

[2]  Sho Sasaki,et al.  Simulating lava flows by an improved cellular automata method , 1997 .

[3]  Jorge Stolfi,et al.  Affine Arithmetic: Concepts and Applications , 2004, Numerical Algorithms.

[4]  Bruno Sudret,et al.  Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..

[5]  Annalisa Cappello,et al.  Retrospective validation of a lava flow hazard map for Mount Etna volcano , 2011 .

[6]  N. Wiener The Homogeneous Chaos , 1938 .

[7]  Paola Annoni,et al.  Partial order investigation of multiple indicator systems using variance-based sensitivity analysis , 2011, Environ. Model. Softw..

[8]  G. M. Crisci,et al.  Lava Flow Simulation Bv A Discrete Cellular Model: First Implementation , 1986 .

[9]  Jing Yang,et al.  Convergence and uncertainty analyses in Monte-Carlo based sensitivity analysis , 2011, Environ. Model. Softw..

[10]  Db Dingwell,et al.  Viscosity of hydrous Etna basalt: implications for Plinian-style basaltic eruptions , 2002, Bulletin of Volcanology.

[11]  M. R. van den Broeke,et al.  Higher surface mass balance of the Greenland ice sheet revealed by high‐resolution climate modeling , 2009 .

[12]  Malka Gorfine,et al.  Sensitivity analysis for complex ecological models - A new approach , 2011, Environ. Model. Softw..

[13]  C. Negro,et al.  Mitigation of lava flow invasion hazard through optimized barrier configuration aided by numerical simulation: The case of the 2001 Etna eruption , 2010 .

[14]  C. Negro,et al.  An emergent strategy for volcano hazard assessment: From thermal satellite monitoring to lava flow modeling , 2012 .

[15]  A. Vicari,et al.  Near‐real‐time forecasting of lava flow hazards during the 12–13 January 2011 Etna eruption , 2011 .

[16]  Ciro Del Negro,et al.  Modeling of the 2001 lava flow at Etna volcano by a Cellular Automata approach , 2007, Environ. Model. Softw..

[17]  I. Sobol Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[18]  Willy Bauwens,et al.  Sobol' sensitivity analysis of a complex environmental model , 2011, Environ. Model. Softw..

[19]  L. Fortuna,et al.  Simulations of the 2004 lava flow at Etna volcano using the magflow cellular automata model , 2008 .

[20]  N. Morenoa,et al.  AN OBJECT-BASED LAND-USE CELLULAR AUTOMATA MODEL TO OVERCOME CELL SIZE AND NEIGHBORHOOD SENSITIVITY , 2008 .

[21]  C. Negro,et al.  Assessment and modeling of lava flow hazard on Etna volcano , 2010 .

[22]  I. Sobola,et al.  Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[23]  M. Dragoni,et al.  Downslope flow models of a Bingham liquid: Implications for lava flows , 1986 .

[24]  Boris Kompare,et al.  Environmental Modelling & Software , 2014 .

[25]  Thomas Gerstner,et al.  Numerical integration using sparse grids , 2004, Numerical Algorithms.

[26]  Maria Teresa Pareschi,et al.  Topographic control on lava flow paths at Mount Etna, Italy: Implications for hazard assessment , 2009 .

[27]  Gaetana Ganci,et al.  The initial phases of the 2008–2009 Mount Etna eruption: A multidisciplinary approach for hazard assessment , 2011 .

[28]  Paolo Milazzo,et al.  A P Systems Flat Form Preserving Step-by-step Behaviour , 2008, Fundam. Informaticae.

[29]  D. Shahsavani,et al.  Variance-based sensitivity analysis of model outputs using surrogate models , 2011, Environ. Model. Softw..

[30]  Ciro Del Negro,et al.  Forecasting lava flow hazards during the 2006 Etna eruption: Using the MAGFLOW cellular automata model , 2009, Comput. Geosci..

[31]  M. James,et al.  Detecting the development of active lava flow fields with a very‐long‐range terrestrial laser scanner and thermal imagery , 2009 .

[32]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[33]  Suzana Dragicevic,et al.  Assessing cellular automata model behaviour using a sensitivity analysis approach , 2006, Comput. Environ. Urban Syst..

[34]  Rocco Rongo,et al.  SCIARA γ2: An improved cellular automata model for lava flows and applications to the 2002 Etnean crisis , 2006, Comput. Geosci..

[35]  L. Fortuna,et al.  Lava flow simulations using discharge rates from thermal infrared satellite imagery during the 2006 Etna eruption , 2009 .

[36]  Olivier P. Le Maître,et al.  Polynomial chaos expansion for sensitivity analysis , 2009, Reliab. Eng. Syst. Saf..

[37]  Rocco Rongo,et al.  Lava Flow Hazard Evaluation Through Cellular Automata and Genetic Algorithms: an Application to Mt Etna Volcano , 2008, Fundam. Informaticae.

[38]  A. Saltelli,et al.  Importance measures in global sensitivity analysis of nonlinear models , 1996 .