Stability and Leakage Analysis of a Novel PP Based 9T SRAM Cell Using N Curve at Deep Submicron Technology for Multimedia Applications

Due to continuous scaling of CMOS, stability is a prime concerned for CMOS SRAM memory cells. As scaling will increase the packing density but at the same time it is affecting the stability which leads to write failures and read disturbs of the conventional 6T SRAM cell. To increase the stability of the cell various SRAM cell topologies has been introduced, 8T SRAM is one of them but it has its limitation like read disturbance. In this paper we have analyzed a novel PP based 9T SRAM at 45 nm technology. Cell which has 33% increased SVNM (Static Voltage Noise Margin) from 6T and also 22%.reduced leakage power. N curve analysis has been done to find the various stability factors. As compared to the 10T SRAM cell it is more area efficient.

[1]  Zhiyu Liu,et al.  Characterization of a Novel Nine-Transistor SRAM Cell , 2008, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[2]  A.P. Chandrakasan,et al.  A Reconfigurable 8T Ultra-Dynamic Voltage Scalable (U-DVS) SRAM in 65 nm CMOS , 2009, IEEE Journal of Solid-State Circuits.

[3]  W. Dehaene,et al.  Read Stability and Write-Ability Analysis of SRAM Cells for Nanometer Technologies , 2006, IEEE Journal of Solid-State Circuits.

[4]  E. Seevinck,et al.  Static-noise margin analysis of MOS SRAM cells , 1987 .

[5]  Seung-Ho Song,et al.  Implementation of low-voltage static RAM with enhanced data stability and circuit speed , 2009, Microelectron. J..

[6]  Shilpi Birla,et al.  Static Noise Margin Analysis of Various SRAM Topologies , 2011 .

[7]  C. Wann,et al.  SRAM cell design for stability methodology , 2005, IEEE VLSI-TSA International Symposium on VLSI Technology, 2005. (VLSI-TSA-Tech)..

[8]  Magdy A. Bayoumi,et al.  Low-Power Cache Design Using 7T SRAM Cell , 2007, IEEE Transactions on Circuits and Systems II: Express Briefs.

[9]  A.P. Chandrakasan,et al.  Static noise margin variation for sub-threshold SRAM in 65-nm CMOS , 2006, IEEE Journal of Solid-State Circuits.