Optimal scaling of the MALA algorithm with irreversible proposals for Gaussian targets
暂无分享,去创建一个
Konstantinos Spiliopoulos | Natesh S. Pillai | Michela Ottobre | N. Pillai | K. Spiliopoulos | M. Ottobre
[1] Jonathan C. Mattingly,et al. SPDE limits of the random walk Metropolis algorithm in high dimensions , 2009 .
[2] K. Spiliopoulos,et al. Irreversible Langevin samplers and variance reduction: a large deviations approach , 2014, 1404.0105.
[3] B. Jourdain,et al. Optimal scaling for the transient phase of Metropolis Hastings algorithms: The longtime behavior , 2012, 1212.5517.
[4] G. Pavliotis,et al. Variance Reduction Using Nonreversible Langevin Samplers , 2015, Journal of statistical physics.
[5] J. Rosenthal,et al. Optimal scaling for various Metropolis-Hastings algorithms , 2001 .
[6] C. Hwang,et al. Accelerating Gaussian Diffusions , 1993 .
[7] Radford M. Neal,et al. ANALYSIS OF A NONREVERSIBLE MARKOV CHAIN SAMPLER , 2000 .
[8] Jonathan C. Mattingly,et al. Diffusion limits of the random walk metropolis algorithm in high dimensions , 2010, 1003.4306.
[9] C. Hwang,et al. Accelerating diffusions , 2005, math/0505245.
[10] Generalized and hybrid Metropolis-Hastings overdamped Langevin algorithms , 2017, 1701.05833.
[11] A. Dvoretzky,et al. Asymptotic normality for sums of dependent random variables , 1972 .
[12] A. Horowitz. A generalized guided Monte Carlo algorithm , 1991 .
[13] A. Doucet,et al. The Bouncy Particle Sampler: A Nonreversible Rejection-Free Markov Chain Monte Carlo Method , 2015, 1510.02451.
[14] J. Rosenthal,et al. Optimal scaling of discrete approximations to Langevin diffusions , 1998 .
[15] J. D. Doll,et al. Brownian dynamics as smart Monte Carlo simulation , 1978 .
[16] E. Berger. Asymptotic behaviour of a class of stochastic approximation procedures , 1986 .
[17] A. M. Stuart,et al. Diffusion limit for the random walk Metropolis algorithm out of stationarity , 2014, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.
[18] Joris Bierkens,et al. Non-reversible Metropolis-Hastings , 2014, Stat. Comput..
[19] Alexandre H. Thi'ery,et al. Optimal Scaling and Diffusion Limits for the Langevin Algorithm in High Dimensions , 2011, 1103.0542.
[20] G. Pavliotis,et al. Nonreversible Langevin Samplers: Splitting Schemes, Analysis and Implementation , 2017, 1701.04247.
[21] Juan Kuntz,et al. Non-stationary phase of the MALA algorithm , 2016, Stochastics and Partial Differential Equations: Analysis and Computations.
[22] K. Spiliopoulos,et al. Variance reduction for irreversible Langevin samplers and diffusion on graphs , 2014, 1410.0255.
[23] Michela Ottobre,et al. Markov Chain Monte Carlo and Irreversibility , 2016 .
[24] N. Pillai,et al. A Function Space HMC Algorithm With Second Order Langevin Diffusion Limit , 2013, 1308.0543.
[25] Werner Krauth,et al. Event-chain Monte Carlo algorithms for hard-sphere systems. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.
[26] R. Tweedie,et al. Exponential convergence of Langevin distributions and their discrete approximations , 1996 .
[27] J. Rosenthal,et al. Scaling limits for the transient phase of local Metropolis–Hastings algorithms , 2005 .
[28] K. Spiliopoulos,et al. Multiscale integrators for stochastic differential equations and irreversible Langevin samplers , 2017 .
[29] Konstantinos Spiliopoulos,et al. Analysis of Multiscale Integrators for Multiple Attractors and Irreversible Langevin Samplers , 2016, Multiscale Model. Simul..
[30] Tianqi Chen,et al. A Complete Recipe for Stochastic Gradient MCMC , 2015, NIPS.
[31] Pierre Monmarch'e. Piecewise deterministic simulated annealing , 2014, 1410.1656.
[32] B. Jourdain,et al. Optimal scaling for the transient phase of the random walk Metropolis algorithm: The mean-field limit , 2012, 1210.7639.