Cristobalite and tridymite from deposits of the Arsenatnaya fumarole (Tolbachik volcano, Kamchatka, Russia)

This article displays data on cristobalite and tridymite from the Arsenatnaya active fumarole, the Tolbachik volcano, Kamchatka, Russia. The minerals occur in associations with fumarolic sylvite, sanidine, cassiterite, hematite, pseudobrookite, johillerite, tilasite, badalovite. Fumarolic cristobalite is tetragonal (-modification); the unit-cell parameters for one of samples are: а = 4,975 (7) Å, с = 6,944 (13) Å, V = 171,89 Å3. There are two types of tridymite — monoclinic (MC) and orthorhombic (PO-10) — in the Arsenatnaya fumarole. The unit-cell parameters of these tridymite modifications are: a = 18,553 (5), b = 5,006 (1), с = 25,952 (10) Å,   = 117,68 (2)o, V = 2134,3 (11) Å3 (MC); a = 9,941 (2), b = 17,165 (4), с = 82,362 (18) Å, V = 14053,4 (29) Å3 (PO-10). Mineral assemblages of cristobalite and tridymite indicate high-temperature formation conditions of these minerals — not lower 450–500 °С — with a high participation degree of HCl and HF in process of basalt alteration by fumarolic gas. The surrounding basalt was a source of silicon. This element was, probably, transported in the form of SiX4, where X = F, Cl.

[1]  A. Menzies,et al.  Deposition of metals and metalloids in the fumarolic fields of Guallatiri and Lastarria volcanoes, northern Chile , 2020 .

[2]  N. Zubkova,et al.  Unusual silicate mineralization in fumarolic sublimates of the Tolbachik volcano, Kamchatka, Russia – Part 1: Neso-, cyclo-, ino- and phyllosilicates , 2020 .

[3]  S. Britvin,et al.  Arsenic and phosphorus in feldspar framework: sanidine–filatovite solid solution series from fumarolic exhalations of the Tolbachik volcano, Kamchatka, Russia , 2019, Physics and Chemistry of Minerals.

[4]  M. Vigasina,et al.  Copper in Natural Oxide Spinels: The New Mineral Thermaerogenite CuAl2O4, Cuprospinel and Cu-Enriched Varieties of Other Spinel-Group Members from Fumaroles of the Tolbachik Volcano, Kamchatka, Russia , 2018, Minerals.

[5]  N. Zubkova,et al.  Fumarolic arsenates − a special type of arsenic mineralization , 2018, European Journal of Mineralogy.

[6]  P. Acquafredda,et al.  Fumarolic Minerals: An Overview of Active European Volcanoes , 2016 .

[7]  M. Vigasina,et al.  New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. I. Yurmarinite, Na7(Fe3+,Mg,Cu)4(AsO4)6 , 2014, Mineralogical Magazine.

[8]  N. Chukanov Infrared spectra of mineral species: Extended library , 2013 .

[9]  G. Williams-Jones,et al.  Fumarolic Activity, Acid-Sulfate Alteration, and High Sulfidation Epithermal Precious Metal Mineralization in the Crater of Kawah Ijen Volcano, Java, Indonesia , 2013 .

[10]  E. Llewellin,et al.  The nature and formation of cristobalite at the Soufrière Hills volcano, Montserrat: implications for the petrology and stability of silicic lava domes , 2013, Bulletin of Volcanology.

[11]  J. C. Jackson,et al.  Monoclinic tridymite in clast-rich impact melt rock from the Chesapeake Bay impact structure , 2011 .

[12]  B. Yardley,et al.  Solubility of quartz in crustal fluids: experiments and general equations for salt solutions and H2O–CO2 mixtures at 400–800°C and 0.1–0.9 GPa , 2006 .

[13]  K. Kihara,et al.  X-ray, DTA and Raman studies of monoclinic tridymite and its higher temperature orthorhombic modification with varying temperature , 2005 .

[14]  A. G. Allen,et al.  Gas and particle emissions from Soufrière Hills Volcano, Montserrat, West Indies: characterization and health hazard assessment , 2000 .

[15]  H. Graetsch,et al.  X-ray powder diffraction patterns and phase relationship of tridymite modifications , 1991 .

[16]  W. Rose,et al.  Fumarole incrustations at active central american volcanoes , 1974 .

[17]  Donald Β. Peacor High-temperature single-crystal study of the cristobalite inversion , 1973 .

[18]  J. B. Jones,et al.  The nature of opal I. nomenclature and constituent phases , 1971 .