Investigation of Transient Flow in a Centrifugal Charging Pump during Charging Operating Process

Centrifugal charging pumps are important components of nuclear power plants and must be operated under multioperating conditions for the requirements of the system. In order to investigate the internal flow mechanism of the centrifugal charging pump during the transient transition process of charging operating from Q = 34 m3/h to Q = 110 m3/h, numerical simulation and experiment are implemented in this study. The relationship between flow rate and time is obtained from the experiment and worked as the boundary condition to accurately accomplish the numerical simulation during the transient process. External and internal characteristics under the variable operating conditions are analyzed through the transient simulation. The results show that the liquid viscosity, large scale vortexes exist in the flow passages in the beginning of the variable operating conditions, which indicates flow separation and the sudden changes in direction of velocity. As the flow rate increases gradually, the flow angles of the fluid in inlet accelerate correspondingly and the flow along the blade is more uniform, which leads to a decrease and movements of the vortexes. The contents of the current work can provide references for the design optimization and fluid control of the pump used in the transient process of variable operating conditions.