The benefits of very low earth orbit for earth observation missions
暂无分享,去创建一个
M. Sureda | R. Outlaw | V. Hanessian | A. Schwalber | N. H. Crisp | P. C. E. Roberts | S. Livadiotti | V. T. A. Oiko | S. Edmondson | S. J. Haigh | C. Huyton | L. Sinpetru | K. L. Smith | S. D. Worrall | J. Becedas | R. M. Dom'inguez | D. Gonz'alez | A. Molgaard | J. Nielsen | M. Bisgaard | Y. -A. Chan | S. Fasoulas | G. H. Herdrich | F. Romano | C. Traub | D. Garc'ia-Alminana | S. Rodr'iguez-Donaire | D. Kataria | B. Belkouchi | A. Conte | J. S. Perez | R. Villain | B. Heisserer | S. Haigh | J. Becedas | M. Bisgaard | F. Romanò | D. Kataria | S. Fasoulas | D. Gonz'alez | Y. Chan | G. Herdrich | P. Roberts | B. Heisserer | S. Worrall | V. Oiko | L. Sinpetru | S. Rodriguez-Donaire | M. Sureda | R. Outlaw | R. Villain | A. Conte | B. Belkouchi | S. Edmondson | S. Livadiotti | C. Huyton | D. González | C. Traub | A. Schwalber | N. Crisp | J. Nielsen | Katharine L. Smith | K. Smith | J. Perez | V. Hanessian | A. Mølgaard | D. Garcia-Almiñana | R. Dom'inguez | D. Garc'ia-Alminana | S. Rodr'iguez-Donaire | J. Nielsen | Francesco Romano
[1] J. Richelson. The keyhole satellite program , 1984 .
[2] Norman S. Kopeika,et al. Prediction of overall atmospheric modulation transfer function with standard weather parameters: comparison with measurements with two imaging systems , 1995 .
[3] Riccardo Bevilacqua,et al. Drag Deorbit Device: A New Standard Reentry Actuator for CubeSats , 2019, Journal of Spacecraft and Rockets.
[4] James R. Wertz,et al. Quantifying the Cost Reduction Potential for Earth Observation Satellites , 2017 .
[5] Craig Underwood,et al. SNAP-1: A Low Cost Modular COTS-Based Nano-Satellite – Design, Construction, Launch and Early Operations Phase , 2001 .
[6] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[7] Joseph N. Pelton,et al. Handbook of Satellite Applications , 2012 .
[8] Saptarshi Bandyopadhyay,et al. Review of Formation Flying and Constellation Missions Using Nanosatellites , 2016 .
[9] Sabrina Livadiotti,et al. A Semi-Analytical Method for Calculating Revisit Time for Satellite Constellations with Discontinuous Coverage , 2018, ArXiv.
[10] G. Badhwar,et al. Radiation dose rates in Space Shuttle as a function of atmospheric density. , 1999, Radiation measurements.
[11] Marcello Romano,et al. Attitude Stabilization of Spacecraft in Very Low Earth Orbit by Center-Of-Mass Shifting , 2019, Front. Robot. AI.
[12] K. Komurasaki,et al. Analysis of Atmosphere-Breathing Electric Propulsion , 2015, IEEE Transactions on Plasma Science.
[13] Stefan Voigt,et al. Satellite Image Analysis for Disaster and Crisis-Management Support , 2007, IEEE Transactions on Geoscience and Remote Sensing.
[14] G. E. Dille. Guidance , 1930 .
[15] Pierre Defourny,et al. Survey of Hyperspectral Earth Observation Applications from Space in the Sentinel-2 Context , 2018, Remote. Sens..
[16] Alexandre Vidmer,et al. Information filtering via hybridization of similarity preferential diffusion processes , 2013, ArXiv.
[17] John R. Schott,et al. Remote Sensing: The Image Chain Approach , 1996 .
[18] Riccardo Bevilacqua,et al. Rendezvous Maneuvers of Multiple Spacecraft Using Differential Drag Under J2 Perturbation , 2008 .
[19] W. Brown. Synthetic Aperture Radar , 1967, IEEE Transactions on Aerospace and Electronic Systems.
[20] Principal Investigator,et al. ATMOSPHERIC BREATHING ELECTRIC THRUSTER FOR PLANETARY EXPLORATION , 2012 .
[21] V. Jayaraman,et al. Remote sensing applications : An overview , 2007 .
[22] H. Klinkrad. Space Debris: Models and Risk Analysis , 2006 .
[23] Giovanni B. Palmerini,et al. Spacecraft Orbit Control using Air Drag , 2005 .
[24] Peter Roberts,et al. Aerodynamic Attitude and Orbit Control Capabilities of the Dsat CubeSat (AAS 14-063) , 2014 .
[25] Jacoba Auret,et al. Design of an Aerodynamic Attitude Control System for a CubeSat , 2012 .
[26] Glenn Creamer,et al. Pointing Control for Low Altitude Triple Cubesat Space Darts , 2009 .
[27] Zhou Hao,et al. Very Low Earth Orbit mission concepts for Earth Observation: Benefits and challenges. , 2014 .
[28] James Lumpp,et al. Aerodynamic Stability for CubeSats at ISS Orbit , 2013 .
[29] B. Nechad,et al. Optical Remote Sensing of the North Sea , 2008 .
[30] Norman S. Kopeika,et al. Imaging through the atmosphere: practical instrumentation-based theory and verification of aerosol modulation transfer function , 1993 .
[31] Peter Roberts,et al. Atmospheric Interface Reentry Point Targeting Using Aerodynamic Drag Control , 2015 .
[32] James Mason,et al. Orbit Determination and Differential-drag Control of Planet Labs Cubesat Constellations , 2015, 1509.03270.
[33] Qian Wu,et al. Daedalus: A Low-Flying Spacecraft for the Exploration of the Lower Thermosphere - Ionosphere , 2019 .
[34] K. Tomiyasu,et al. Tutorial review of synthetic-aperture radar (SAR) with applications to imaging of the ocean surface , 1978, Proceedings of the IEEE.
[36] J. I. Vette,et al. AP-8 trapped proton environment for solar maximum and solar minimum. [Computer accessible models , 1976 .
[37] T. Binder,et al. System analysis and test-bed for an atmosphere-breathing electric propulsion system using an inductive plasma thruster , 2018, Acta Astronautica.
[38] H. Greidanus,et al. Satellite Imaging for Maritime Surveillance of the European Seas , 2008 .
[39] Alessandro Golkar,et al. CubeSat evolution: Analyzing CubeSat capabilities for conducting science missions , 2017 .
[40] T. Binder,et al. On the exploitation of differential aerodynamic lift and drag as a means to control satellite formation flight , 2020, CEAS Space Journal.
[41] Jeng-Shing Chern,et al. Aerodynamic and gravity gradient stabilization for microsatellites , 2000 .
[42] Daniel D. Mazanek,et al. Simulation and Shuttle Hitchhiker Validation of Passive Satellite Aerostabilization , 1995 .
[43] S. W. Samwel,et al. Low Earth Orbital Atomic Oxygen Erosion Effect on Spacecraft Materials , 2014 .
[44] Daniel Heynderickx,et al. ESA's Space Environment Information System (SPENVIS) - A WWW interface to models of the space environment and its effects , 2000 .
[45] D. King-hele,et al. Satellite orbits in an atmosphere : theory and applications , 1987 .
[46] Martin N. Sweeting,et al. Modern Small Satellites-Changing the Economics of Space , 2018, Proceedings of the IEEE.
[47] Nicholas Wilson,et al. A Review of LIDAR Radiometric Processing: From Ad Hoc Intensity Correction to Rigorous Radiometric Calibration , 2015, Sensors.
[48] John F. Silny,et al. Radiometric sensitivity contrast metrics for hyperspectral remote sensors , 2014, Optics & Photonics - Optical Engineering + Applications.
[49] M. Horsley,et al. Small Satellite Rendezvous Using Differential Lift and Drag , 2013 .
[50] Peter Jankowitsch,et al. Report of the Legal Sub-Committee on the Work of its Third Session (9 - 26 March 1964) to the Committee on the Peaceful Uses of Outer Space , 1964, International Legal Materials.
[51] David Finkleman,et al. A critical assessment of satellite drag and atmospheric density modeling , 2014 .
[52] Michael L Gargasz. Optimal Spacecraft Attitude Control Using Aerodynamic Torques , 2007 .
[53] M. Petró‐Turza,et al. The International Organization for Standardization. , 2003 .
[54] Norman S. Kopeika,et al. Image Resolution Limits Resulting From Mechanical Vibrations , 1985, Optics & Photonics.
[55] Martha C. Anderson,et al. Landsat-8: Science and Product Vision for Terrestrial Global Change Research , 2014 .
[56] X. Sun. Lidar Sensors From Space , 2017 .
[57] H. Bock,et al. GOCE SSTI L2 tracking losses and their impact on POD performance , 2011 .
[58] D. Drob,et al. Nrlmsise-00 Empirical Model of the Atmosphere: Statistical Comparisons and Scientific Issues , 2002 .
[59] Stephen Hobbs,et al. Descending Sun-Synchronous Orbits with Aerodynamic Inclination Correction , 2015 .
[60] Gil Denis,et al. The evolution of Earth Observation satellites in Europe and its impact on the performance of emergency response services , 2016 .
[61] Mark L. Psiaki,et al. Nanosatellite Attitude Stabilization Using Passive Aerodynamics and Active Magnetic Torquing , 2004 .
[62] A. J. E. Smith. A practical method for computing SAR satellite revisit times: application to RADARSAT‐1 and ENVISAT , 2007 .
[63] Qian Wu,et al. Daedalus: a low-flying spacecraft for in situ exploration of the lower thermosphere–ionosphere , 2020, Geoscientific Instrumentation, Methods and Data Systems.
[64] Stephen Hobbs,et al. Design references and advantages of a VLEO SAR EO mission , 2014 .
[65] Kazutaka Nishiyama,et al. Air Breathing Ion Engine Concept , 2003 .
[66] D. Vallado. Fundamentals of Astrodynamics and Applications , 1997 .
[67] Constantin Traub,et al. Influence of energy accommodation on a robust spacecraft rendezvous maneuver using differential aerodynamic forces , 2020, CEAS Space Journal.
[68] R. Bevilacqua,et al. Spacecraft Deorbit Point Targeting Using Aerodynamic Drag , 2017 .
[69] Zhou Hao,et al. Using Aerodynamic Torques To Aid Detumbling Into An Aerostable State , 2016 .
[70] E. G. Stassinopoulos,et al. The space radiation environment for electronics , 1988, Proc. IEEE.
[71] L. Ippolito. Radiowave Propagation in Satellite Communications , 1986 .
[72] Frank Groen. NASA Office of Safety and Mission Assurance , 2016 .
[73] Javad Haghshenas,et al. Vibration effects on remote sensing satellite images , 2017 .
[74] Riccardo Bevilacqua,et al. Guidance, navigation, and control solutions for spacecraft re-entry point targeting using aerodynamic drag , 2019, Acta Astronautica.
[75] David Krejci,et al. A survey and assessment of the capabilities of Cubesats for Earth observation , 2012 .
[76] James I. Vette,et al. The AE-8 trapped electron model environment , 1991 .
[77] John Tulip,et al. The RapidEye mission design , 2005 .
[78] Lisbeth Gronlund,et al. The Physics of Space Security: a reference manual , 2005 .
[79] J.J.F. Liu,et al. Semianalytic Theory for a Close-Earth Artificial Satellite , 1980 .
[80] T. Binder,et al. Transmission probabilities of rarefied flows in the application of atmosphere-breathing electric propulsion , 2016 .
[81] F. Hossain,et al. A review of applications of satellite earth observation data for global societal benefit and stewardship of planet earth , 2016 .
[82] Heiner Klinkrad,et al. Orbital Debris and Sustainability of Space Operations 46 , 2013 .
[83] James R. Wertz,et al. Moderately Elliptical Very Low Orbits (MEVLOs) as a Long-Term Solution to Orbital Debris , 2012 .
[84] J. Bufton. Laser altimetry measurements from aircraft and spacecraft , 1989, Proc. IEEE.
[85] Peter Roberts,et al. Perigee Attitude Maneuvers of Geostationary Satellites During Electric Orbit Raising , 2017 .
[86] G. Badhwar,et al. The radiation environment in low-Earth orbit. , 1997, Radiation research.
[87] Jonathan Becedas,et al. DISCOVERER: Radical Redesign of Earth Observation Satellites for Sustained Operation at Significantly Lower Altitudes , 2017 .
[88] Luís Gonzaga Trabasso,et al. Status and Trends of Smallsats and Their Launch Vehicles — An Up-to-date Review , 2017 .
[89] Marco Arcioni,et al. RAM Electric Propulsion for Low Earth Orbit Operation: an ESA study. , 2007 .
[90] E. Bergmann,et al. Orbital Formationkeeping with Differential Drag , 1987 .
[91] Yashon O. Ouma,et al. Advancements in medium and high resolution Earth observation for land-surface imaging: Evolutions, future trends and contributions to sustainable development , 2016 .
[92] gazon synthétique,et al. Operations , 1961 .
[93] David Hinkley,et al. Operations, Orbit Determination, and Formation Control of the AeroCube-4 CubeSats , 2013 .
[94] Marcello Romano,et al. Aerodynamic Three-Axis Attitude Stabilization of a Spacecraft by Center-of-Mass Shifting , 2017 .
[95] James Mason,et al. Results from the Planet Labs Flock Constellation , 2014 .
[96] A. A. Degtyarev,et al. Investigation of equilibria of a satellite subjected to gravitational and aerodynamic torques , 2007 .
[97] Harold Roy Raemer. Radar Systems Principles , 1996 .