Algorithmic strategies for full waveform inversion: 1D experiments
暂无分享,去创建一个
[1] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[2] P. Deuflhard. Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms , 2011 .
[3] William W. Symes,et al. Migration velocity analysis and waveform inversion , 2008 .
[4] O. Ghattas,et al. A Newton-CG method for large-scale three-dimensional elastic full-waveform seismic inversion , 2008 .
[5] Thomas H. Jordan,et al. Full 3D Tomography for the Crustal Structure of the Los Angeles Region , 2007 .
[6] Carl Tape,et al. Finite‐frequency tomography using adjoint methods—Methodology and examples using membrane surface waves , 2007 .
[7] R. Plessix. A review of the adjoint-state method for computing the gradient of a functional with geophysical applications , 2006 .
[8] Michael Hintermüller,et al. A SQP-Semismooth Newton-type Algorithm applied to Control of the instationary Navier--Stokes System Subject to Control Constraints , 2006, SIAM J. Optim..
[9] Qinya Liu,et al. Tomography, Adjoint Methods, Time-Reversal, and Banana-Doughnut Kernels , 2004 .
[10] Tiankai Tu,et al. High Resolution Forward And Inverse Earthquake Modeling on Terascale Computers , 2003, ACM/IEEE SC 2003 Conference (SC'03).
[11] George Biros,et al. Parallel Multiscale Gauss-Newton-Krylov Methods for Inverse Wave Propagation , 2002, ACM/IEEE SC 2002 Conference (SC'02).
[12] Kazufumi Ito,et al. The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..
[13] R. Pratt. Seismic waveform inversion in the frequency domain; Part 1, Theory and verification in a physical scale model , 1999 .
[14] Gene H. Golub,et al. A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration , 1999, SIAM J. Sci. Comput..
[15] Hicks,et al. Gauss–Newton and full Newton methods in frequency–space seismic waveform inversion , 1998 .
[16] D. Dobson,et al. Convergence of an Iterative Method for Total Variation Denoising , 1997 .
[17] C. Bunks,et al. Multiscale seismic waveform inversion , 1995 .
[18] C. Vogel,et al. Analysis of bounded variation penalty methods for ill-posed problems , 1994 .
[19] Homer F. Walker,et al. Globally Convergent Inexact Newton Methods , 1994, SIAM J. Optim..
[20] Matthias Heinkenschloss,et al. Mesh Independence for Nonlinear Least Squares Problems with Norm Constraints , 1993, SIAM J. Optim..
[21] L. Rudin,et al. Nonlinear total variation based noise removal algorithms , 1992 .
[22] William W. Symes,et al. Velocity inversion by differential semblance optimization , 1991 .
[23] Gerard T. Schuster,et al. Wave-equation traveltime inversion , 1991 .
[24] F. Santosa,et al. Computation of the Hessian for least-squares solutions of inverse problems of reflection seismology , 1988 .
[25] Fadil Santosa,et al. A Simple Computational Scheme for Determining the Sound Speed of an Acoustic Medium from Its Surface Impulse Response , 1987 .
[26] A. Tarantola. A strategy for nonlinear elastic inversion of seismic reflection data , 1986 .
[27] P. Lailly,et al. Pre-stack inversion of a 1-D medium , 1986, Proceedings of the IEEE.
[28] E. Allgower,et al. A mesh-independence principle for operator equations and their discretizations , 1986 .
[29] F. Santosa,et al. The determination of a layered acoustic medium via multiple impedance profile inversions from plane wave responses , 1985 .
[30] Kenneth P. Bube,et al. The One-Dimensional Inverse Problem of Reflection Seismology , 1983 .
[31] Trond Steihaug,et al. Truncated-newtono algorithms for large-scale unconstrained optimization , 1983, Math. Program..
[32] R. Dembo,et al. INEXACT NEWTON METHODS , 1982 .
[33] Guy Chavent,et al. About the stability of the inverse problem in 1-D wave equations—application to the interpretation of seismic profiles , 1979 .
[34] R. G. Pratt,et al. Full waveform tomography for lithospheric imaging: results from a blind test in a realistic crustal model , 2007 .
[35] Michael Hintermüller,et al. An Infeasible Primal-Dual Algorithm for Total Bounded Variation-Based Inf-Convolution-Type Image Restoration , 2006, SIAM J. Sci. Comput..
[36] R. Gerhard Pratt,et al. Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies , 2004 .
[37] Peter Deuflhard,et al. Newton Methods for Nonlinear Problems , 2004 .
[38] Nicholas I. M. Gould,et al. Trust Region Methods , 2000, MOS-SIAM Series on Optimization.
[39] Curtis R. Vogel,et al. Iterative Methods for Total Variation Denoising , 1996, SIAM J. Sci. Comput..
[40] Homer F. Walker,et al. Choosing the Forcing Terms in an Inexact Newton Method , 1996, SIAM J. Sci. Comput..
[41] Ekkehard W. Sachs,et al. Gauss-Newton methods with grid refinement , 1991 .
[42] K. Hoffmann,et al. Optimal Control of Partial Differential Equations , 1991 .
[43] Fadil Santosa,et al. An analysis of least-squares velocity inversion , 1989 .
[44] Max Gunzburger,et al. Perspectives in flow control and optimization , 1987 .
[45] G. Chavent. Identification of functional parameters in partial differential equations , 1974 .
[46] E. Polak,et al. Note sur la convergence de méthodes de directions conjuguées , 1969 .