Algorithmic strategies for full waveform inversion: 1D experiments

Full-waveform seismic inversion, i.e., the iterative minimization of the misfit between observed seismic data and synthetic data obtained by a numerical solution of the wave equation provides a systematic, flexible, general mechanism for reconstructing earth models from observed ground motion. However, many difficulties arise for highly resolved models and the associated large-dimensional parameter spaces and high-frequency sources. First, the least-squares data-misfit functional suffers from spurious local minima, which necessitates an accurate initial guess for the smooth background model. Second, total variation regularization methods that are used to resolve sharp interfaces create significant numerical difficulties because of their nonlinearity and near-degeneracy. Third, bound constraints on continuous model parameters present considerable difficulty for commonly used active-set or interior-point methods for inequality constraints because of the infinite-dimensional nature of the parameters. Finally, common gradient-based optimization methods have difficulties scaling to the many model parameters that result when the continuous parameter fields are discretized. We have developed an optimization strategy that incorporates several techniques address these four difficulties, including grid, frequency, and time-window continuation; primal-dual methods for treating bound inequality constraints and total variation regularization; and inexact matrix-free Newton-Krylov optimization. Using this approach, several computations were performed effectively for a 1D setting with synthetic observations.

[1]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[2]  P. Deuflhard Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms , 2011 .

[3]  William W. Symes,et al.  Migration velocity analysis and waveform inversion , 2008 .

[4]  O. Ghattas,et al.  A Newton-CG method for large-scale three-dimensional elastic full-waveform seismic inversion , 2008 .

[5]  Thomas H. Jordan,et al.  Full 3D Tomography for the Crustal Structure of the Los Angeles Region , 2007 .

[6]  Carl Tape,et al.  Finite‐frequency tomography using adjoint methods—Methodology and examples using membrane surface waves , 2007 .

[7]  R. Plessix A review of the adjoint-state method for computing the gradient of a functional with geophysical applications , 2006 .

[8]  Michael Hintermüller,et al.  A SQP-Semismooth Newton-type Algorithm applied to Control of the instationary Navier--Stokes System Subject to Control Constraints , 2006, SIAM J. Optim..

[9]  Qinya Liu,et al.  Tomography, Adjoint Methods, Time-Reversal, and Banana-Doughnut Kernels , 2004 .

[10]  Tiankai Tu,et al.  High Resolution Forward And Inverse Earthquake Modeling on Terascale Computers , 2003, ACM/IEEE SC 2003 Conference (SC'03).

[11]  George Biros,et al.  Parallel Multiscale Gauss-Newton-Krylov Methods for Inverse Wave Propagation , 2002, ACM/IEEE SC 2002 Conference (SC'02).

[12]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[13]  R. Pratt Seismic waveform inversion in the frequency domain; Part 1, Theory and verification in a physical scale model , 1999 .

[14]  Gene H. Golub,et al.  A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration , 1999, SIAM J. Sci. Comput..

[15]  Hicks,et al.  Gauss–Newton and full Newton methods in frequency–space seismic waveform inversion , 1998 .

[16]  D. Dobson,et al.  Convergence of an Iterative Method for Total Variation Denoising , 1997 .

[17]  C. Bunks,et al.  Multiscale seismic waveform inversion , 1995 .

[18]  C. Vogel,et al.  Analysis of bounded variation penalty methods for ill-posed problems , 1994 .

[19]  Homer F. Walker,et al.  Globally Convergent Inexact Newton Methods , 1994, SIAM J. Optim..

[20]  Matthias Heinkenschloss,et al.  Mesh Independence for Nonlinear Least Squares Problems with Norm Constraints , 1993, SIAM J. Optim..

[21]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[22]  William W. Symes,et al.  Velocity inversion by differential semblance optimization , 1991 .

[23]  Gerard T. Schuster,et al.  Wave-equation traveltime inversion , 1991 .

[24]  F. Santosa,et al.  Computation of the Hessian for least-squares solutions of inverse problems of reflection seismology , 1988 .

[25]  Fadil Santosa,et al.  A Simple Computational Scheme for Determining the Sound Speed of an Acoustic Medium from Its Surface Impulse Response , 1987 .

[26]  A. Tarantola A strategy for nonlinear elastic inversion of seismic reflection data , 1986 .

[27]  P. Lailly,et al.  Pre-stack inversion of a 1-D medium , 1986, Proceedings of the IEEE.

[28]  E. Allgower,et al.  A mesh-independence principle for operator equations and their discretizations , 1986 .

[29]  F. Santosa,et al.  The determination of a layered acoustic medium via multiple impedance profile inversions from plane wave responses , 1985 .

[30]  Kenneth P. Bube,et al.  The One-Dimensional Inverse Problem of Reflection Seismology , 1983 .

[31]  Trond Steihaug,et al.  Truncated-newtono algorithms for large-scale unconstrained optimization , 1983, Math. Program..

[32]  R. Dembo,et al.  INEXACT NEWTON METHODS , 1982 .

[33]  Guy Chavent,et al.  About the stability of the inverse problem in 1-D wave equations—application to the interpretation of seismic profiles , 1979 .

[34]  R. G. Pratt,et al.  Full waveform tomography for lithospheric imaging: results from a blind test in a realistic crustal model , 2007 .

[35]  Michael Hintermüller,et al.  An Infeasible Primal-Dual Algorithm for Total Bounded Variation-Based Inf-Convolution-Type Image Restoration , 2006, SIAM J. Sci. Comput..

[36]  R. Gerhard Pratt,et al.  Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies , 2004 .

[37]  Peter Deuflhard,et al.  Newton Methods for Nonlinear Problems , 2004 .

[38]  Nicholas I. M. Gould,et al.  Trust Region Methods , 2000, MOS-SIAM Series on Optimization.

[39]  Curtis R. Vogel,et al.  Iterative Methods for Total Variation Denoising , 1996, SIAM J. Sci. Comput..

[40]  Homer F. Walker,et al.  Choosing the Forcing Terms in an Inexact Newton Method , 1996, SIAM J. Sci. Comput..

[41]  Ekkehard W. Sachs,et al.  Gauss-Newton methods with grid refinement , 1991 .

[42]  K. Hoffmann,et al.  Optimal Control of Partial Differential Equations , 1991 .

[43]  Fadil Santosa,et al.  An analysis of least-squares velocity inversion , 1989 .

[44]  Max Gunzburger,et al.  Perspectives in flow control and optimization , 1987 .

[45]  G. Chavent Identification of functional parameters in partial differential equations , 1974 .

[46]  E. Polak,et al.  Note sur la convergence de méthodes de directions conjuguées , 1969 .