Quasilinear subdivision schemes with applications to ENO interpolation

[1]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[2]  Gilles Deslauriers,et al.  Symmetric Iterative Interpolation Processes , 1989 .

[3]  C. Micchelli,et al.  Stationary Subdivision , 1991 .

[4]  Nira Dyn,et al.  Analysis of uniform binary subdivision schemes for curve design , 1991 .

[5]  I. Daubechies,et al.  Two-scale difference equations I: existence and global regularity of solutions , 1991 .

[6]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[7]  I. Daubechies,et al.  Two-scale difference equations II. local regularity, infinite products of matrices and fractals , 1992 .

[8]  D. Donoho Unconditional Bases Are Optimal Bases for Data Compression and for Statistical Estimation , 1993 .

[9]  A. Harti Discrete multi-resolution analysis and generalized wavelets , 1993 .

[10]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[11]  A. Cohen,et al.  Wavelets and Multiscale Signal Processing , 1995 .

[12]  L. Schumaker,et al.  Recent advances in wavelet analysis , 1995 .

[13]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[14]  R. L. Claypoole,et al.  Nonlinear wavelet transforms for image coding , 1997, Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136).

[15]  R. Jia,et al.  Multivariate refinement equations and convergence of subdivision schemes , 1998 .

[16]  Stéphane Mallat,et al.  Analysis of low bit rate image transform coding , 1998, IEEE Trans. Signal Process..

[17]  S. Mallat A wavelet tour of signal processing , 1998 .

[18]  E. Candès,et al.  Ridgelets: a key to higher-dimensional intermittency? , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[19]  I. Daubechies,et al.  Tree Approximation and Optimal Encoding , 2001 .

[20]  Tensor product multiresolution analysis with error control for compact image representation , 2002, Signal Process..

[21]  Bin Han,et al.  Computing the Smoothness Exponent of a Symmetric Multivariate Refinable Function , 2002, SIAM J. Matrix Anal. Appl..

[22]  Richard G. Baraniuk,et al.  Nonlinear wavelet transforms for image coding via lifting , 2003, IEEE Trans. Image Process..