Higher-Order Total Variation Classes on Grids: Minimax Theory and Trend Filtering Methods
暂无分享,去创建一个
Yu-Xiang Wang | Ryan J. Tibshirani | James Sharpnack | Veeranjaneyulu Sadhanala | Yu-Xiang Wang | R. Tibshirani | Veeranjaneyulu Sadhanala | J. Sharpnack
[1] R. Tibshirani,et al. The solution path of the generalized lasso , 2010, 1005.1971.
[2] Stephen P. Boyd,et al. 1 Trend Filtering , 2009, SIAM Rev..
[3] P. Lions,et al. Image recovery via total variation minimization and related problems , 1997 .
[4] Stephan Didas,et al. Splines in Higher Order TV Regularization , 2006, International Journal of Computer Vision.
[5] Z. Harchaoui,et al. Multiple Change-Point Estimation With a Total Variation Penalty , 2010 .
[6] Albrecht Böttcher,et al. Eigenvectors of Hermitian Toeplitz matrices with smooth simple-loop symbols , 2016 .
[7] Albrecht Böttcher,et al. Spectral properties of banded Toeplitz matrices , 1987 .
[8] A. Rinaldo. Properties and refinements of the fused lasso , 2008, 0805.0234.
[9] A. Tsybakov,et al. Minimax theory of image reconstruction , 1993 .
[10] Karl Kunisch,et al. Total Generalized Variation , 2010, SIAM J. Imaging Sci..
[11] Antonin Chambolle,et al. On Total Variation Minimization and Surface Evolution Using Parametric Maximum Flows , 2009, International Journal of Computer Vision.
[12] Alexander J. Smola,et al. Trend Filtering on Graphs , 2014, J. Mach. Learn. Res..
[13] Laurent Condat,et al. A Direct Algorithm for 1-D Total Variation Denoising , 2013, IEEE Signal Processing Letters.
[14] Alexandre B. Tsybakov,et al. Introduction to Nonparametric Estimation , 2008, Springer series in statistics.
[15] Holger Hoefling. A Path Algorithm for the Fused Lasso Signal Approximator , 2009, 0910.0526.
[16] J. Strikwerda. Finite Difference Schemes and Partial Differential Equations , 1989 .
[17] O. Scherzer,et al. Characterization of minimizers of convex regularization functionals , 2006 .
[18] Antonin Chambolle,et al. A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.
[19] C. Neuman,et al. Discrete (Legendre) orthogonal polynomials—a survey , 1974 .
[20] L. Rudin,et al. Nonlinear total variation based noise removal algorithms , 1992 .
[21] Albrecht Böttcher,et al. On the Structure of the Eigenvectors of Large Hermitian Toeplitz Band Matrices , 2010 .
[22] Peter Kulchyski. and , 2015 .
[23] R. Tibshirani,et al. Additive models with trend filtering , 2017, The Annals of Statistics.
[24] Alexander J. Smola,et al. The Falling Factorial Basis and Its Statistical Applications , 2014, ICML.
[25] R. Tibshirani,et al. Sparsity and smoothness via the fused lasso , 2005 .
[26] D. Donoho,et al. Minimax Risk Over Hyperrectangles, and Implications , 1990 .
[27] A. Kovac,et al. Nonparametric Regression on a Graph , 2011 .
[28] R. Tibshirani. Adaptive piecewise polynomial estimation via trend filtering , 2013, 1304.2986.
[29] I. Johnstone,et al. Minimax estimation via wavelet shrinkage , 1998 .
[30] Nicholas A. Johnson,et al. A Dynamic Programming Algorithm for the Fused Lasso and L 0-Segmentation , 2013 .
[31] Suvrit Sra,et al. Modular Proximal Optimization for Multidimensional Total-Variation Regularization , 2014, J. Mach. Learn. Res..
[32] James G. Scott,et al. A Fast and Flexible Algorithm for the Graph-Fused Lasso , 2015, 1505.06475.
[33] Yu-Xiang Wang,et al. Total Variation Classes Beyond 1d: Minimax Rates, and the Limitations of Linear Smoothers , 2016, NIPS.
[34] S. Geer,et al. Locally adaptive regression splines , 1997 .
[35] James G. Scott,et al. The DFS Fused Lasso: Linear-Time Denoising over General Graphs , 2016, J. Mach. Learn. Res..
[36] P. Rigollet,et al. Optimal rates for total variation denoising , 2016, 1603.09388.