Histone modifications and chromatin organization in prostate cancer.

Epigenetic mechanisms, including histone modifications, nucleosomal remodeling and chromosomal looping, contribute to the onset and progression of prostate cancer. Recent technical advances significantly increase our understanding of the genome-wide epigenetic regulation of gene expression in prostate cancer. Aberrant genomic distribution and global level of histone modifications, nucleosome repositioning at the gene promoter and enhancer regions, as well as androgen receptor-mediated chromosomal looping may lead to the silencing of tumor suppressor genes and the activation of proto-oncogenes. In addition, androgen receptor-induced chromosomal looping facilitates recurrent gene fusion in prostate cancer. Studies in epigenetic regulation have translational implications in the identification of new biomarkers and the development of new therapies in prostate cancer.

[1]  Clifford A. Meyer,et al.  Nucleosome Dynamics Define Transcriptional Enhancers , 2010, Nature Genetics.

[2]  P. Sun,et al.  Application of histone modification in the risk prediction of the biochemical recurrence after radical prostatectomy. , 2010, Asian journal of andrology.

[3]  J. V. van Deursen,et al.  Overexpression of the E2 ubiquitin–conjugating enzyme UbcH10 causes chromosome missegregation and tumor formation , 2010, The Journal of cell biology.

[4]  Jie Zhang,et al.  Nuclear Receptor-Induced Chromosomal Proximity and DNA Breaks Underlie Specific Translocations in Cancer , 2009, Cell.

[5]  S. Varambally,et al.  Induced Chromosomal Proximity and Gene Fusions in Prostate Cancer , 2009, Science.

[6]  Lee E. Edsall,et al.  Human DNA methylomes at base resolution show widespread epigenomic differences , 2009, Nature.

[7]  E. Liu,et al.  An Oestrogen Receptor α-bound Human Chromatin Interactome , 2009, Nature.

[8]  Rolf Ohlsson,et al.  Chromosome crosstalk in three dimensions , 2009, Nature.

[9]  B. Cairns The logic of chromatin architecture and remodelling at promoters , 2009, Nature.

[10]  Young-Joon Kim,et al.  Nucleosome deposition and DNA methylation at coding region boundaries , 2009, Genome Biology.

[11]  C. Cooper,et al.  ETS gene fusions in prostate cancer , 2009, Nature Reviews Urology.

[12]  Clifford A. Meyer,et al.  Androgen Receptor Regulates a Distinct Transcription Program in Androgen-Independent Prostate Cancer , 2009, Cell.

[13]  A. Jemal,et al.  Cancer Statistics, 2009 , 2009, CA: a cancer journal for clinicians.

[14]  S. Horvath,et al.  Global levels of histone modifications predict prognosis in different cancers. , 2009, The American journal of pathology.

[15]  Dustin E. Schones,et al.  Characterization of human epigenomes. , 2009, Current opinion in genetics & development.

[16]  Yi Qu,et al.  Genome-Wide Profiling of Histone H3 Lysine 4 and Lysine 27 Trimethylation Reveals an Epigenetic Signature in Prostate Carcinogenesis , 2009, PloS one.

[17]  Nathaniel D. Heintzman,et al.  Histone modifications at human enhancers reflect global cell-type-specific gene expression , 2009, Nature.

[18]  A. Probst,et al.  Epigenetic inheritance during the cell cycle , 2009, Nature Reviews Molecular Cell Biology.

[19]  Yuka Kanno,et al.  Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. , 2009, Immunity.

[20]  S. Varambally,et al.  Genomic Loss of microRNA-101 Leads to Overexpression of Histone Methyltransferase EZH2 in Cancer , 2008, Science.

[21]  C. Cooper,et al.  Concepts of epigenetics in prostate cancer development , 2008, British Journal of Cancer.

[22]  G. Coetzee,et al.  Genomic Androgen Receptor-Occupied Regions with Different Functions, Defined by Histone Acetylation, Coregulators and Transcriptional Capacity , 2008, PloS one.

[23]  R. Jansen,et al.  Epigenome dynamics: a quantitative genetics perspective , 2008, Nature Reviews Genetics.

[24]  Richard Durbin,et al.  Mapping short DNA sequencing reads and calling variants using mapping quality scores. , 2008, Genome research.

[25]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[26]  Peter J. Park,et al.  A Sequence Motif within Chromatin Entry Sites Directs MSL Establishment on the Drosophila X Chromosome , 2008, Cell.

[27]  Marcel H. Schulz,et al.  A Global View of Gene Activity and Alternative Splicing by Deep Sequencing of the Human Transcriptome , 2008, Science.

[28]  A. Hoffman,et al.  CTCF Regulates Allelic Expression of Igf2 by Orchestrating a Promoter-Polycomb Repressive Complex 2 Intrachromosomal Loop , 2008, Molecular and Cellular Biology.

[29]  T. Mikkelsen,et al.  Genome-scale DNA methylation maps of pluripotent and differentiated cells , 2008, Nature.

[30]  Michael Q. Zhang,et al.  Combinatorial patterns of histone acetylations and methylations in the human genome , 2008, Nature Genetics.

[31]  D. Gold,et al.  Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation , 2008, Nature Genetics.

[32]  J. Dekker Gene Regulation in the Third Dimension , 2008, Science.

[33]  Dustin E. Schones,et al.  Dynamic Regulation of Nucleosome Positioning in the Human Genome , 2008, Cell.

[34]  Dustin E. Schones,et al.  Genome-wide approaches to studying chromatin modifications , 2008, Nature Reviews Genetics.

[35]  S. Cross,et al.  The polycomb group protein EZH2 regulates actin polymerization in human prostate cancer cells , 2008, The Prostate.

[36]  Gabor T. Marth,et al.  Whole-genome sequencing and variant discovery in C. elegans , 2008, Nature Methods.

[37]  J. Gillespie,et al.  Prostate Cancer Epigenetics: A Review on Gene Regulation , 2007, Gene regulation and systems biology.

[38]  D. Tindall,et al.  Androgen receptor structural and functional elements: role and regulation in prostate cancer. , 2007, Molecular endocrinology.

[39]  D. Tindall,et al.  Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. , 2007, Endocrine reviews.

[40]  D. Ghosh,et al.  A polycomb repression signature in metastatic prostate cancer predicts cancer outcome. , 2007, Cancer research.

[41]  S. Dhanasekaran,et al.  Integrative genomics analysis reveals silencing of beta-adrenergic signaling by polycomb in prostate cancer. , 2007, Cancer cell.

[42]  Peter A. Jones,et al.  Role of nucleosomal occupancy in the epigenetic silencing of the MLH1 CpG island. , 2007, Cancer cell.

[43]  Hao Li,et al.  Cell- and gene-specific regulation of primary target genes by the androgen receptor. , 2007, Genes & development.

[44]  K. Pienta,et al.  A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. , 2007, Molecular cell.

[45]  T. Mikkelsen,et al.  Genome-wide maps of chromatin state in pluripotent and lineage-committed cells , 2007, Nature.

[46]  H. Aburatani,et al.  Identification of novel androgen response genes in prostate cancer cells by coupling chromatin immunoprecipitation and genomic microarray analysis , 2007, Oncogene.

[47]  Dustin E. Schones,et al.  High-Resolution Profiling of Histone Methylations in the Human Genome , 2007, Cell.

[48]  A. Hoffman,et al.  Epigenetics of Long-Range Chromatin Interactions , 2007, Pediatric Research.

[49]  Long-Cheng Li,et al.  Epigenetics of prostate cancer. , 2007, Frontiers in bioscience : a journal and virtual library.

[50]  A. D. De Marzo,et al.  Abnormal DNA methylation, epigenetics, and prostate cancer. , 2007, Frontiers in bioscience : a journal and virtual library.

[51]  Henriette O'Geen,et al.  Identification of Genes Directly Regulated by the Oncogene ZNF217 Using Chromatin Immunoprecipitation (ChIP)-Chip Assays* , 2007, Journal of Biological Chemistry.

[52]  Nathaniel D. Heintzman,et al.  Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome , 2007, Nature Genetics.

[53]  J. Roberts,et al.  The expanding role of epigenetics in the development, diagnosis and treatment of prostate cancer and benign prostatic hyperplasia. , 2007, The Journal of urology.

[54]  E. Lander,et al.  The Mammalian Epigenome , 2007, Cell.

[55]  T. Kouzarides Chromatin Modifications and Their Function , 2007, Cell.

[56]  T. Jenuwein,et al.  Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression , 2007, Nature Cell Biology.

[57]  Kelly M. McGarvey,et al.  The cancer epigenome--components and functional correlates. , 2006, Genes & development.

[58]  Kevin Struhl,et al.  Relationships between p63 binding, DNA sequence, transcription activity, and biological function in human cells. , 2006, Molecular cell.

[59]  Daria A. Gaykalova,et al.  Nucleosomes can form a polar barrier to transcript elongation by RNA polymerase II. , 2006, Molecular cell.

[60]  Suresh Cuddapah,et al.  The genomic landscape of histone modifications in human T cells , 2006, Proceedings of the National Academy of Sciences.

[61]  Rolf Ohlsson,et al.  CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Paul Tempst,et al.  JHDM2A, a JmjC-Containing H3K9 Demethylase, Facilitates Transcription Activation by Androgen Receptor , 2006, Cell.

[63]  James A. Cuff,et al.  A Bivalent Chromatin Structure Marks Key Developmental Genes in Embryonic Stem Cells , 2006, Cell.

[64]  Sean Davis,et al.  Genome-Wide Analysis of Menin Binding Provides Insights into MEN1 Tumorigenesis , 2006, PLoS genetics.

[65]  W. Schulz,et al.  Epigenetics of prostate cancer: beyond DNA methylation , 2006, Journal of cellular and molecular medicine.

[66]  Cyrus Martin,et al.  The diverse functions of histone lysine methylation , 2005, Nature Reviews Molecular Cell Biology.

[67]  Antoine H. F. M. Peters,et al.  LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription , 2005, Nature.

[68]  Myles A Brown,et al.  Spatial and temporal recruitment of androgen receptor and its coactivators involves chromosomal looping and polymerase tracking. , 2005, Molecular cell.

[69]  S. Horvath,et al.  Global histone modification patterns predict risk of prostate cancer recurrence , 2005, Nature.

[70]  B. Steensel Mapping of genetic and epigenetic regulatory networks using microarrays , 2005, Nature Genetics.

[71]  Kathleen F. Kerr,et al.  Standardizing global gene expression analysis between laboratories and across platforms , 2005, Nature Methods.

[72]  O. Jänne,et al.  Coregulator recruitment and histone modifications in transcriptional regulation by the androgen receptor. , 2004, Molecular endocrinology.

[73]  D. Tindall,et al.  Mechanisms of androgen-refractory prostate cancer. , 2004, The New England journal of medicine.

[74]  Wolf Reik,et al.  Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops , 2004, Nature Genetics.

[75]  Yi Zhang,et al.  The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. , 2004, Current opinion in genetics & development.

[76]  C. Heinlein,et al.  Androgen receptor in prostate cancer. , 2004, Endocrine reviews.

[77]  Thomas E. Royce,et al.  Distribution of NF-κB-binding sites across human chromosome 22 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[78]  S. Dhanasekaran,et al.  The polycomb group protein EZH2 is involved in progression of prostate cancer , 2002, Nature.

[79]  Y. Shang,et al.  Formation of the androgen receptor transcription complex. , 2002, Molecular cell.

[80]  J. Dekker,et al.  Capturing Chromosome Conformation , 2002, Science.

[81]  D. Feldman,et al.  The development of androgen-independent prostate cancer , 2001, Nature Reviews Cancer.

[82]  M. Lazar,et al.  Transcriptional Repression by Nuclear Hormone Receptors , 2000, Trends in Endocrinology & Metabolism.

[83]  K. Struhl Histone acetylation and transcriptional regulatory mechanisms. , 1998, Genes & development.

[84]  R. Büttner,et al.  Global levels of histone modifications predict prostate cancer recurrence , 2010, The Prostate.

[85]  Raymond K. Auerbach,et al.  PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls , 2009, Nature Biotechnology.

[86]  Steven Henikoff,et al.  Nucleosome destabilization in the epigenetic regulation of gene expression , 2008, Nature Reviews Genetics.

[87]  A. Kornblihtt Chromatin, transcript elongation and alternative splicing , 2006, Nature Structural &Molecular Biology.

[88]  I. Amit,et al.  Supporting Online Material Materials and Methods Som Text Comprehensive Mapping of Long-range Interactions Reveals Folding Principles of the Human Genome , 2022 .