Computation of invariant tori by Newton-Krylov methods in large-scale dissipative systems

Abstract A method to compute invariant tori in high-dimensional systems, obtained as discretizations of PDEs, by continuation and Newton–Krylov methods is described. Invariant tori are found as fixed points of a generalized Poincare map so that the dimension of the system of equations to be solved is that of the original system. Due to the dissipative nature of the problems studied, the convergence of the linear solvers is extremely fast. The computation of periodic orbits inside the Arnold’s tongues is also considered. Thermal convection of a binary mixture of fluids, in a rectangular cavity, has been used to test the method.

[1]  C. Simó On the Hénon-Pomeau attractor , 1979 .

[2]  B. García-Archilla Krylov methods and test functions for detecting bifurcations in one parameter-dependent partial differential equations , 2022 .

[3]  H. Broer,et al.  Global Analysis of Dynamical Systems , 2001 .

[4]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .

[5]  Carles Simó,et al.  Averaging under Fast Quasiperiodic Forcing , 1994 .

[6]  Frank Schilder,et al.  Continuation of Quasi-periodic Invariant Tori , 2005, SIAM J. Appl. Dyn. Syst..

[7]  Carles Simó Effective computations in hamiltonian dynamics , 1996 .

[8]  Yuri A. Kuznetsov,et al.  The fold-flip bifurcation , 2004, Int. J. Bifurc. Chaos.

[9]  C. Kaas-Petersen,et al.  Computation, continuation, and bifurcation of torus solutions for dissipative maps and ordinary differential equations , 1987 .

[10]  J. Villanueva,et al.  Effective reducibility of quasi-periodic linear equations close to constant coefficients , 1997 .

[11]  Carles Simó,et al.  Towards global models near homoclinic tangencies of dissipative diffeomorphisms , 1998 .

[12]  E. Knobloch,et al.  Simulations of oscillatory binary fluid convection in large aspect ratio containers. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  J. Hershey Computation , 1991, Digit. Signal Process..

[14]  Marta Net,et al.  Symmetric Periodic orbits and Global Dynamics of Tori in an O(2) Equivariant System: Two-Dimensional thermal convection , 2005, Int. J. Bifurc. Chaos.

[15]  L. V. Veen,et al.  The quasi-periodic doubling cascade in the transition to weak turbulence , 2005, 1012.3799.

[16]  Cross Structure of nonlinear traveling-wave states in finite geometries. , 1988, Physical review. A, General physics.

[17]  Marta Net,et al.  Amplitude equations close to a triple-(+1) bifurcation point of D4-symmetric periodic orbits in O(2) equivariant systems , 2006 .

[18]  Michael T. Heath,et al.  Scientific Computing , 2018 .

[19]  C. Simó,et al.  Effective Computations in Celestial Mechanics and Astrodynamics , 1998 .

[20]  Surko,et al.  Oscillatory traveling-wave convection in a finite container. , 1987, Physical review letters.

[21]  Kolodner Repeated transients of weakly nonlinear traveling-wave convection. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[22]  Angel Jorbayx,et al.  On the normal behaviour of partially elliptic lower-dimensional tori of Hamiltonian systems , 1997 .

[23]  H. Broer,et al.  Quasi-periodic Henon-like attractors in the Lorenz-84 climate model with seasonal forcing , 2005 .

[24]  Marta Net,et al.  Newton-Krylov continuation of periodic orbits for Navier-Stokes flows , 2004 .

[25]  Leon O. Chua,et al.  Algorithms for computing almost periodic steady-state response of nonlinear systems to multiple input frequencies , 1981 .

[26]  Hendrik Broer,et al.  The Hopf-saddle-node bifurcation for fixed points of 3D-diffeomorphisms: the Arnol'd resonance web , 2008 .

[27]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[28]  Àngel Jorba,et al.  Numerical computation of the normal behaviour of invariant curves of n-dimensional maps , 2001 .

[29]  Juan Sánchez,et al.  On the Multiple Shooting Continuation of Periodic orbits by Newton-Krylov Methods , 2010, Int. J. Bifurc. Chaos.

[30]  Àngel Jorba,et al.  On the reducibility of linear differential equations with quasiperiodic coefficients , 1992 .

[31]  Carles Simó Global dynamics and fast indicators , 2001 .