Computation of invariant tori by Newton-Krylov methods in large-scale dissipative systems
暂无分享,去创建一个
Marta Net | Carles Simó | C. Simó | J. Sánchez | M. Net | Juan Sánchez
[1] C. Simó. On the Hénon-Pomeau attractor , 1979 .
[2] B. García-Archilla. Krylov methods and test functions for detecting bifurcations in one parameter-dependent partial differential equations , 2022 .
[3] H. Broer,et al. Global Analysis of Dynamical Systems , 2001 .
[4] P. Mazur,et al. Non-equilibrium thermodynamics, , 1963 .
[5] Carles Simó,et al. Averaging under Fast Quasiperiodic Forcing , 1994 .
[6] Frank Schilder,et al. Continuation of Quasi-periodic Invariant Tori , 2005, SIAM J. Appl. Dyn. Syst..
[7] Carles Simó. Effective computations in hamiltonian dynamics , 1996 .
[8] Yuri A. Kuznetsov,et al. The fold-flip bifurcation , 2004, Int. J. Bifurc. Chaos.
[9] C. Kaas-Petersen,et al. Computation, continuation, and bifurcation of torus solutions for dissipative maps and ordinary differential equations , 1987 .
[10] J. Villanueva,et al. Effective reducibility of quasi-periodic linear equations close to constant coefficients , 1997 .
[11] Carles Simó,et al. Towards global models near homoclinic tangencies of dissipative diffeomorphisms , 1998 .
[12] E. Knobloch,et al. Simulations of oscillatory binary fluid convection in large aspect ratio containers. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.
[13] J. Hershey. Computation , 1991, Digit. Signal Process..
[14] Marta Net,et al. Symmetric Periodic orbits and Global Dynamics of Tori in an O(2) Equivariant System: Two-Dimensional thermal convection , 2005, Int. J. Bifurc. Chaos.
[15] L. V. Veen,et al. The quasi-periodic doubling cascade in the transition to weak turbulence , 2005, 1012.3799.
[16] Cross. Structure of nonlinear traveling-wave states in finite geometries. , 1988, Physical review. A, General physics.
[17] Marta Net,et al. Amplitude equations close to a triple-(+1) bifurcation point of D4-symmetric periodic orbits in O(2) equivariant systems , 2006 .
[18] Michael T. Heath,et al. Scientific Computing , 2018 .
[19] C. Simó,et al. Effective Computations in Celestial Mechanics and Astrodynamics , 1998 .
[20] Surko,et al. Oscillatory traveling-wave convection in a finite container. , 1987, Physical review letters.
[21] Kolodner. Repeated transients of weakly nonlinear traveling-wave convection. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[22] Angel Jorbayx,et al. On the normal behaviour of partially elliptic lower-dimensional tori of Hamiltonian systems , 1997 .
[23] H. Broer,et al. Quasi-periodic Henon-like attractors in the Lorenz-84 climate model with seasonal forcing , 2005 .
[24] Marta Net,et al. Newton-Krylov continuation of periodic orbits for Navier-Stokes flows , 2004 .
[25] Leon O. Chua,et al. Algorithms for computing almost periodic steady-state response of nonlinear systems to multiple input frequencies , 1981 .
[26] Hendrik Broer,et al. The Hopf-saddle-node bifurcation for fixed points of 3D-diffeomorphisms: the Arnol'd resonance web , 2008 .
[27] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[28] Àngel Jorba,et al. Numerical computation of the normal behaviour of invariant curves of n-dimensional maps , 2001 .
[29] Juan Sánchez,et al. On the Multiple Shooting Continuation of Periodic orbits by Newton-Krylov Methods , 2010, Int. J. Bifurc. Chaos.
[30] Àngel Jorba,et al. On the reducibility of linear differential equations with quasiperiodic coefficients , 1992 .
[31] Carles Simó. Global dynamics and fast indicators , 2001 .