Orthographic Star Coordinates

Star coordinates is a popular projection technique from an nD data space to a 2D/3D visualization domain. It is defined by setting n coordinate axes in the visualization domain. Since it generally defines an affine projection, strong distortions can occur: an nD sphere can be mapped to an ellipse of arbitrary size and aspect ratio. We propose to restrict star coordinates to orthographic projections which map an nD sphere of radius r to a 2D circle of radius r. We achieve this by formulating conditions for the coordinate axes to define orthographic projections, and by running a repeated non-linear optimization in the background of every modification of the coordinate axes. This way, we define a number of orthographic interaction concepts as well as orthographic data tour sequences: a scatterplot tour, a principle component tour, and a grand tour. All concepts are illustrated and evaluated with synthetic and real data.

[1]  Beat Kleiner,et al.  Graphical Methods for Data Analysis , 1983 .

[2]  Thomas Lewiner,et al.  Exploratory visualization based on multidimensional transfer functions and star coordinates , 2006, 2006 19th Brazilian Symposium on Computer Graphics and Image Processing.

[3]  Olga Stepánková,et al.  Visualization of Trends Using RadViz , 2009, ISMIS.

[4]  Daniel Asimov,et al.  The grand tour: a tool for viewing multidimensional data , 1985 .

[5]  Holger Theisel,et al.  An Enhanced Spring Model for Information Visualization , 1998, Comput. Graph. Forum.

[6]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[7]  J. Friedman Exploratory Projection Pursuit , 1987 .

[8]  Georges G. Grinstein,et al.  Properties of normalized radial visualizations , 2012, Inf. Vis..

[9]  Philipp Birken,et al.  Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.

[10]  Ian T. Jolliffe,et al.  Principal Component Analysis , 2002, International Encyclopedia of Statistical Science.

[11]  Lars Linsen,et al.  Continuous Representation of Projected Attribute Spaces of Multifields over Any Spatial Sampling , 2013, Comput. Graph. Forum.

[12]  Georges G. Grinstein,et al.  Dimensional anchors: a graphic primitive for multidimensional multivariate information visualizations , 1999, NPIVM '99.

[13]  Eser Kandogan Star Coordinates: A Multi-dimensional Visualization Technique with Uniform Treatment of Dimensions , 2000 .

[14]  David G. Stork,et al.  Pattern classification, 2nd Edition , 2000 .

[15]  Kwan-Liu Ma,et al.  StarClass: Interactive Visual Classification using Star Coordinates , 2003, SDM.

[16]  Lenka Nováková,et al.  Multidimensional clusters in RadViz , 2006 .

[17]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[18]  Mohammed Yeasin,et al.  Visualization of High Dimensional Data using an Automated 3D Star Co-ordinate System , 2006, The 2006 IEEE International Joint Conference on Neural Network Proceedings.

[19]  Michael Friendly,et al.  SAS System for Statistical Graphics,First Edition , 1991 .

[20]  G. Farin Curves and Surfaces for Cagd: A Practical Guide , 2001 .

[21]  David A. Freedman,et al.  Statistical Models: Theory and Practice: References , 2005 .

[22]  Luigi Di Caro,et al.  Analyzing the Role of Dimension Arrangement for Data Visualization in Radviz , 2010, PAKDD.

[23]  Georges G. Grinstein,et al.  DNA visual and analytic data mining , 1997 .

[24]  John W. Tukey,et al.  A Projection Pursuit Algorithm for Exploratory Data Analysis , 1974, IEEE Transactions on Computers.

[25]  Andreas Buja,et al.  Grand tour and projection pursuit , 1995 .

[26]  Eser Kandogan,et al.  Visualizing multi-dimensional clusters, trends, and outliers using star coordinates , 2001, KDD '01.