Copper(I) Chelation by Tetradentate NSSN Donor Ligands: Reversible Oxidation but no Oxygenation

The copper(I) complexes [Cu(L4)](ClO4), L4 = 1,6-bis(N-methyl-1H-benzimidazol-2-yl)-2,5-dithiahexane (bmbdh) or 1,7-bis(N-methyl-1H-benzimidazol-2-yl)-2,6-dithiaheptane (bmdhp) were obtained and investigated through structure analysis (bmdhp compounds), cyclic voltammetry, UV/Vis/NIR and EPR spectroelectrochemistry. Structure comparison of the complexes [Cu(bmdhp)](ClO4) (1) and [Cu(bmdhp)](SO3CF3) (2) with the previously reported [CuI(bdhp)(H2O)](PF6)0.66(BF4)0.34 (4), bdhp = 1,7-bis(1H-benzimidazol-2-yl)-2,6-dithiaheptane, with the related [CuI(mmb)2](BF4) (5), mmb = 1-methyl-2-methylthiomethyl-1H-benzimidazole, with the oxidised [CuII(bmdhp)(H2O)](ClO4)2 (7), and with the zinc(II) species [Zn(bmbdh)(H2O)(SO3CF3)](SO3CF3) (8) and {[Zn(μ-bmdhp)(H2O)(SO3CF3)]2}(SO3CF3) (9) reveal a variety of coordination numbers, L4 ligand coordination modes, M–N bond lengths and especially N–M–N angles, affecting the accessibility of the central metal ions. Electronic consequences as evident from oxidation potentials and from EPR and absorption spectra of the copper(II) forms are discussed. The lack of reactivity of the copper(I) compounds towards O2 is attributed to steric shielding and to electronic effects from two π accepting thioether donors.

[1]  W. Kaim,et al.  Chelation and Bridging of Zinc(II) by Tetradentate N2S2 Donor Ligands: Similarities and Differences to Copper(I) and Copper(II) Systems , 2010 .

[2]  A. Spek,et al.  Electrocatalytic CO2 Conversion to Oxalate by a Copper Complex , 2010, Science.

[3]  M. Kubo,et al.  Mononuclear copper(II)-superoxo complexes that mimic the structure and reactivity of the active centers of PHM and DbetaM. , 2009, Journal of the American Chemical Society.

[4]  M. Drew,et al.  Copper(II) complexes of tetradentate N2S2 donor sets: synthesis, crystal structure characterization and reactivity , 2009 .

[5]  K. Nicholas,et al.  Imidazole substituent effects on oxidative reactivity of tripodal(imid)2(thioether)CuI complexes. , 2008, Inorganic chemistry.

[6]  F. Tuczek,et al.  Wie hydroxylieren Kupferenzyme aliphatische Substrate? Jüngste Erkenntnisse aus der Chemie synthetischer Modellsysteme , 2008 .

[7]  Timothy J Nelson,et al.  A definitive example of a geometric "entatic state" effect: electron-transfer kinetics for a copper(II/I) complex involving A quinquedentate macrocyclic trithiaether-bipyridine ligand. , 2007, Journal of the American Chemical Society.

[8]  K. Hodgson,et al.  Dioxygen reactivity of a copper(I) complex with a N3S thioether chelate; peroxo-dicopper(II) formation including sulfur-ligation. , 2006, Inorganic chemistry.

[9]  S. Hasnain,et al.  Active site structures and the redox properties of blue copper proteins: atomic resolution structure of azurin II and electronic structure calculations of azurin, plastocyanin and stellacyanin. , 2006, Dalton transactions.

[10]  K. Harms,et al.  Kristallographische Charakterisierung eines synthetischen 1:1-End-on-Kupferdisauerstoff- Adduktkomplexes† , 2006 .

[11]  C. Cramer,et al.  Effects of thioether substituents on the O2 reactivity of beta-diketiminate-Cu(I) complexes: probing the role of the methionine ligand in copper monooxygenases. , 2006, Journal of the American Chemical Society.

[12]  M. Neuburger,et al.  Axial versus equatorial coordination of thioether sulfur: Mixed ligand copper(II) complexes of 2-pyridyl-N-(2′-methylthiophenyl)-methyleneimine with bidentate diimine ligands , 2006 .

[13]  J. Klinman The Copper-Enzyme Family of Dopamine β-Monooxygenase and Peptidylglycine α-Hydroxylating Monooxygenase: Resolving the Chemical Pathway for Substrate Hydroxylation* , 2006, Journal of Biological Chemistry.

[14]  S. Prigge,et al.  Dioxygen Binds End-On to Mononuclear Copper in a Precatalytic Enzyme Complex , 2004, Science.

[15]  G. U. Kulkarni,et al.  Copper(II) complexes of new pentadentate bis(benzimidazolyl)-dithioether ligands: synthesis, structure, spectra and redox properties , 2004 .

[16]  L. A. Ochrymowycz,et al.  Electron-transfer kinetics of copper(II/I) tripodal ligand complexes. , 2003, Inorganic chemistry.

[17]  M. Palaniandavar,et al.  Synthesis, structure, spectra and redox of Cu(II) complexes of chelating bis(benzimidazole)—thioether ligands as models for electron transfer blue copper proteins , 2001 .

[18]  M. Albrecht,et al.  Crucial role of Cu-S bonding for structural changes accompanying the reversible CuI/CuII transition in an unrestrained Cu(N[symbol: see text]S)2 coordination arrangement. An experimental and DFT study. , 2000, Inorganic chemistry.

[19]  M. Albrecht,et al.  Copper(I) and copper(II) complexes of the bidentate imidazole/thioether ligand 1-methyl-2-(methylthiomethyl)-1H-benzimidazole , 1999 .

[20]  J. Klinman Mechanisms Whereby Mononuclear Copper Proteins Functionalize Organic Substrates. , 1996, Chemical reviews.

[21]  J. Reedijk,et al.  Copper Coordination Compounds of Polyimidazole-Thioether Ligands. X-ray Structures and Characterization of {Bis[4-((methylthio)ethyl)imidazol-2-yl]methane}bis(tetrafluoroborato)copper(II), Dichloro{(imidazol-2-yl)[4-((methylthio)ethyl)imidazol-2-yl]methane}copper(II), and {[4-(imidazol-2-ylmethyl)im , 1994 .

[22]  E. Solomon,et al.  Axial ligand bonding in blue copper proteins , 1992 .

[23]  M. Daněk,et al.  Simple construction of an infrared optically transparent thin-layer electrochemical cell: Applications to the redox reactions of ferrocene, Mn2(CO)10 and Mn(CO)3(3,5-di-t-butyl-catecholate)− , 1991 .

[24]  R. Carballo,et al.  Structure of 1,7-bis(benzimidazol-2-yl)-2,6-dithiaheptanecopper(I) perchlorate at 233 K , 1991 .

[25]  H. Schugar,et al.  Characterization of apical copper(II)-thioether bonding. Structure and electronic spectra of bis(2,2-bis(5-phenyl-2-imidazolyl)propane)copper(II) diperchlorate and bis(1,3-bis(5-phenyl-2-imidazolyl)-2-thiapropane)copper(II) diperchlorate , 1981 .

[26]  B. Hathaway,et al.  The electronic properties and stereochemistry of mono-nuclear complexes of the copper(II) ion , 1970 .

[27]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[28]  E. Bouwman,et al.  Copper co-ordination compounds of a chelating imidazole–thioether ligand. The molecular structures of [1,3-bis(5-methyl-4-imidazolyl)-2-thiapropane]-bis(nitrato)copper(II) and bis[1,3-bis(5-methyl-4-imidazolyl)-2-thiapropane]-copper(II) bis(tetrafluoroborate)–ethanol(1/2) , 1990 .

[29]  S. Ernst,et al.  ESR of homo- and heteroleptic mono- and dinuclear tris(.alpha.-diimine)ruthenium radical complexes , 1990 .

[30]  B. Hathaway A new look at the stereochemistry and electronic properties of complexes of the copper(II) ion , 1984 .

[31]  A. W. Addison,et al.  Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate , 1984 .

[32]  G. Matsubayashi,et al.  Studies on blue copper protein models: syntheses, properties, and electron-transfer reactions of bis[4-(alkylmercaptomethyl)imidazole]copper(II) diperchlorate and related complexes and X-ray crystallographic analysis of bis[4-(n-propylmercaptomethyl)imidazole-N3S]copper(II) diperchlorate , 1983 .

[33]  J. G. Haasnoot,et al.  Photo-induced reduction of Cu(II)-benzimidazolylthioether chelates. The formation of 1,6-bis(N-methylbenzimidazol-2-yl)-2,5-dithiahexane copper(I) perchlorate from the corresponding copper(II) compound by photo-induced reduction in dimethylformamide , 1983 .