Algoritmos Evolutivos y su empleo en el ajuste de controladores del tipo PID: Estado Actual y Perspectivas

PID controllers are a reliable, robust, practical and easy to implement control solution for industrial processes. They provide the first control layer for a vast majority of industrial applications. Owing to this, several researches invest time and resources to improve their performance. The research lines in this field scope with new tuning methods, new types of structures and integral design methods. For tuning methods, improvements could be fulfilled stating an optimization problem, which could be non-linear, non-convex and highly constrained. In such instances, evolutionary algorithms have shown a good performance and have been used in various proposals related with PID controllers tuning. This work shows a review of these proposals and the benefits obtained in each case. Some trends and possible future research lines are also identified.

[1]  Carlos A. Coello Coello,et al.  Constraint-handling in nature-inspired numerical optimization: Past, present and future , 2011, Swarm Evol. Comput..

[2]  Saptarshi Das,et al.  Tuning of an optimal fuzzy PID controller with stochastic algorithms for networked control systems with random time delay. , 2011, ISA transactions.

[3]  Xavier Blasco Ferragud,et al.  Hybrid DE algorithm with adaptive crossover operator for solving real-world numerical optimization problems , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[4]  K.J. ÅSTRÖM,et al.  Design of PI Controllers based on Non-Convex Optimization , 1998, Autom..

[5]  Kim Fung Man,et al.  Multiobjective Optimization , 2011, IEEE Microwave Magazine.

[6]  Patrick M. Reed,et al.  A framework for Visually Interactive Decision-making and Design using Evolutionary Multi-objective Optimization (VIDEO) , 2007, Environ. Model. Softw..

[7]  John R. Koza,et al.  What's AI Done for Me Lately? Genetic Programming's Human-Competitive Results , 2003, IEEE Intell. Syst..

[8]  Silvana Revollar,et al.  Diseño Simultáneo de Proceso y Control de una Torre Sulfitadora de Jugo de Caña de Azúcar , 2009 .

[9]  Piero P. Bonissone,et al.  Multicriteria decision making (mcdm): a framework for research and applications , 2009, IEEE Computational Intelligence Magazine.

[10]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[11]  Sung-Kwun Oh,et al.  Design of optimized cascade fuzzy controller based on differential evolution: Simulation studies and practical insights , 2012, Eng. Appl. Artif. Intell..

[12]  Alberto Herreros,et al.  Design of PID-type controllers using multiobjective genetic algorithms. , 2002, ISA transactions.

[13]  Oscar Cordón,et al.  International Journal of Approximate Reasoning a Historical Review of Evolutionary Learning Methods for Mamdani-type Fuzzy Rule-based Systems: Designing Interpretable Genetic Fuzzy Systems , 2022 .

[14]  Gideon Avigad,et al.  Towards a general tool for mechatronic design , 2003, Proceedings of 2003 IEEE Conference on Control Applications, 2003. CCA 2003..

[15]  David E. Goldberg,et al.  The compact genetic algorithm , 1999, IEEE Trans. Evol. Comput..

[16]  Witold Pedrycz,et al.  A Multiobjective Design of a Patient and Anaesthetist-Friendly Neuromuscular Blockade Controller , 2007, IEEE Transactions on Biomedical Engineering.

[17]  Zafer Bingul,et al.  A Fuzzy Logic Controller tuned with PSO for 2 DOF robot trajectory control , 2011, Expert Syst. Appl..

[18]  A.A.A. Elgammal,et al.  Self-regulating particle swarm optimised controller for (photovoltaic-fuel cell) battery charging of hybrid electric vehicles , 2012 .

[19]  Ramon Vilanova,et al.  Control PID robusto: Una visión panorámica , 2011 .

[20]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[21]  Xavier Blasco Ferragud,et al.  A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization , 2008, Inf. Sci..

[22]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[23]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[24]  C.W. de Silva,et al.  System-Based and Concurrent Design of a Smart Mechatronic System Using the Concept of Mechatronic Design Quotient (MDQ) , 2008, IEEE/ASME Transactions on Mechatronics.

[25]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. II. Application example , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[26]  Jasbir S. Arora,et al.  Survey of multi-objective optimization methods for engineering , 2004 .

[27]  Kai Keng Ang,et al.  A synergy of econometrics and computational methods (GARCH-RNFS) for volatility forecasting , 2010, IEEE Congress on Evolutionary Computation.

[28]  Carlos A. Coello Coello,et al.  THEORETICAL AND NUMERICAL CONSTRAINT-HANDLING TECHNIQUES USED WITH EVOLUTIONARY ALGORITHMS: A SURVEY OF THE STATE OF THE ART , 2002 .

[29]  Erik D. Goodman,et al.  Knowledge interaction with genetic programming in mechatronic systems design using bond graphs , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[30]  S. Baskar,et al.  Evolutionary algorithms based design of multivariable PID controller , 2009, Expert Syst. Appl..

[31]  Saeed Tavakoli,et al.  Multi-objective optimization approach to the PI tuning problem , 2007, 2007 IEEE Congress on Evolutionary Computation.

[32]  Chih-Min Lin,et al.  A robust self-learning PID control system design for nonlinear systems using a particle swarm optimization algorithm , 2011, Int. J. Mach. Learn. Cybern..

[33]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[34]  Ponnuthurai N. Suganthan,et al.  Real-parameter evolutionary multimodal optimization - A survey of the state-of-the-art , 2011, Swarm Evol. Comput..

[35]  Andrew Pike,et al.  Alstom Benchmark Challenge II on Gasifier Control , 2006 .

[36]  Minrui Fei,et al.  Real/binary co-operative and co-evolving swarms based multivariable PID controller design of ball mill pulverizing system , 2012 .

[37]  Ponnuthurai N. Suganthan,et al.  Multi-objective robust PID controller tuning using two lbests multi-objective particle swarm optimization , 2011, Inf. Sci..

[38]  Xavier Blasco Ferragud,et al.  Multiobjective evolutionary algorithms for multivariable PI controller design , 2012, Expert Syst. Appl..

[39]  Xavier Blasco Ferragud,et al.  Handling control engineer preferences: Getting the most of PI controllers , 2011, ETFA2011.

[40]  Liang Huang,et al.  Multiobjective Optimization for Controller Design , 2008 .

[41]  Achille Messac,et al.  Physical programming - Effective optimization for computational design , 1996 .

[42]  Xavier Blasco Ferragud,et al.  Comparison of design concepts in multi-criteria decision-making using level diagrams , 2013, Inf. Sci..

[43]  Kiam Heong Ang,et al.  PID control system analysis and design , 2006, IEEE Control Systems.

[44]  Gilberto Reynoso-Meza,et al.  Diseño Multiobjetivo de controladores PID para el Benchmark de Control 2008-2009 , 2009 .

[45]  Hisao Ishibuchi,et al.  Evolutionary many-objective optimization: A short review , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[46]  A. J. Dentsoras,et al.  Soft computing in engineering design - A review , 2008, Adv. Eng. Informatics.

[47]  Carlos A. Coello Coello,et al.  Multi-objective Optimization Using Differential Evolution: A Survey of the State-of-the-Art , 2008 .

[48]  Carlos Cruz,et al.  Optimization in dynamic environments: a survey on problems, methods and measures , 2011, Soft Comput..

[49]  Matthias Ehrgott,et al.  Multiple criteria decision analysis: state of the art surveys , 2005 .

[50]  David W. Coit,et al.  Multi-objective optimization using genetic algorithms: A tutorial , 2006, Reliab. Eng. Syst. Saf..

[51]  Cross-Application Perspectives : Application and Market Requirements , 2011 .

[52]  S. Panda Multi-objective PID controller tuning for a FACTS-based damping stabilizer using Non-dominated Sorting Genetic Algorithm-II , 2011 .

[53]  Rajkumar Roy,et al.  Recent advances in engineering design optimisation: Challenges and future trends , 2008 .

[54]  Ruhul A. Sarker,et al.  GA with a new multi-parent crossover for solving IEEE-CEC2011 competition problems , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[55]  Wen Tan,et al.  Tuning of PID controllers for boiler-turbine units. , 2004, ISA transactions.

[56]  Christopher A. Mattson,et al.  Pareto Frontier Based Concept Selection Under Uncertainty, with Visualization , 2005 .

[57]  Ajith Abraham,et al.  Design of fractional-order PIlambdaDµ controllers with an improved differential evolution , 2009, Eng. Appl. Artif. Intell..

[58]  Rajiv Tiwari,et al.  Design optimization of double-acting hybrid magnetic thrust bearings with control integration using multi-objective evolutionary algorithms , 2009 .

[59]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[60]  Ajith Abraham,et al.  Design of fractional order PIλDμ controllers with an improved differential evolution , 2008, GECCO '08.

[61]  Guilin Yang,et al.  Self-Calibration of a Biologically Inspired 7 DOF Cable-Driven Robotic Arm , 2008, IEEE/ASME Transactions on Mechatronics.

[62]  Nader Nariman-zadeh,et al.  Pareto optimal robust design of fractional-order PID controllers for systems with probabilistic uncertainties , 2012 .

[63]  Ching-Hung Lee,et al.  Fractional-order PID controller optimization via improved electromagnetism-like algorithm , 2010, Expert Syst. Appl..

[64]  Sunan Wang,et al.  Self-organizing genetic algorithm based tuning of PID controllers , 2009, Inf. Sci..

[65]  Peter J. Fleming,et al.  Evolutionary algorithms in control systems engineering: a survey , 2002 .

[66]  Zwe-Lee Gaing,et al.  A particle swarm optimization approach for optimum design of PID controller in AVR system , 2004 .

[67]  David Naso,et al.  Compact Differential Evolution , 2011, IEEE Transactions on Evolutionary Computation.

[68]  M. Alamgir Hossain,et al.  Multi-objective optimal chemotherapy control model for cancer treatment , 2010, Medical & Biological Engineering & Computing.

[69]  Carlos A. Coello Coello,et al.  A Review of Techniques for Handling Expensive Functions in Evolutionary Multi-Objective Optimization , 2010 .

[70]  A. E. Eiben,et al.  On Evolutionary Exploration and Exploitation , 1998, Fundam. Informaticae.

[71]  William L. Luyben,et al.  Simple method for tuning SISO controllers in multivariable systems , 1986 .

[72]  Zwe-Lee Gaing A particle swarm optimization approach for optimum design of PID controller in AVR system , 2004, IEEE Transactions on Energy Conversion.

[73]  Carlos A. Coello Coello,et al.  Multi-Objective Optimization using Differential Evolution : A Survey of the State-ofthe-Art , 2008 .

[74]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[75]  H. T,et al.  The future of PID control , 2001 .

[76]  Carlos A. Coello Coello,et al.  Handling preferences in evolutionary multiobjective optimization: a survey , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[77]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[78]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[79]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[80]  Furong Gao,et al.  Multi-objective optimization and selection for the PI control of ALSTOM gasifier problem , 2010 .

[81]  Francisco Herrera,et al.  A Review of the Application of Multiobjective Evolutionary Fuzzy Systems: Current Status and Further Directions , 2013, IEEE Transactions on Fuzzy Systems.

[82]  Yun Li,et al.  PID control system analysis, design, and technology , 2005, IEEE Transactions on Control Systems Technology.

[83]  Kaisa Miettinen,et al.  Visualizing the Pareto Frontier , 2008, Multiobjective Optimization.

[84]  Gabriela Gaetán,et al.  Una Revisión del Estado del Arte , 2013 .

[85]  Jih-Gau Juang,et al.  PID Control Using Presearched Genetic Algorithms for a MIMO System , 2008, IEEE Trans. Syst. Man Cybern. Part C.

[86]  S. Skogestad Simple analytic rules for model reduction and PID controller tuning , 2004 .

[87]  David W. Corne,et al.  Techniques for highly multiobjective optimisation: some nondominated points are better than others , 2007, GECCO '07.

[88]  P. Balaguer,et al.  Estudio comparativo de algoritmos de auto-ajuste de controladores PID. Resultados del Benchmark 2010-2011 del Grupo de Ingeniería de Control de CEA , 2012 .

[89]  Tore Hägglund,et al.  Advanced PID Control , 2005 .

[90]  Minrui Fei,et al.  Comparative performance analysis of various binary coded PSO algorithms in multivariable PID controller design , 2012, Expert Syst. Appl..

[91]  P. Suganthan,et al.  Problem Definitions and Evaluation Criteria for the CEC 2010 Competition on Constrained Real- Parameter Optimization , 2010 .

[92]  Carlos A. Coello Coello,et al.  Evolutionary multi-objective optimization: a historical view of the field , 2006, IEEE Comput. Intell. Mag..

[93]  Shiow-Fen Hwang,et al.  A Novel Intelligent Multiobjective Simulated Annealing Algorithm for Designing Robust PID Controllers , 2008, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[94]  Carlos Artemio Coello-Coello,et al.  Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art , 2002 .

[95]  Surekha Kamath,et al.  A comparative study of different types of controllers used for blood glucose regulation system , 2009 .

[96]  Yuri B. Shtessel,et al.  Blood glucose regulation using higher‐order sliding mode control , 2008 .

[97]  Xavier Blasco Ferragud,et al.  Modelling preferences in multi-objective engineering design , 2010, Eng. Appl. Artif. Intell..

[98]  Nasser Sadati,et al.  Design of a fractional order PID controller for an AVR using particle swarm optimization , 2009 .

[99]  Xavier Blasco Ferragud,et al.  Controller Tuning by Means of Multi-Objective Optimization Algorithms: A Global Tuning Framework , 2013, IEEE Transactions on Control Systems Technology.

[100]  Carlos A. Coello Coello,et al.  An Introduction to Multi-Objective Particle Swarm Optimizers , 2011 .

[101]  Khaled Rasheed,et al.  A Survey of Fitness Approximation Methods Applied in Evolutionary Algorithms , 2010 .

[102]  Kay Chen Tan,et al.  Modeling and control of a pilot pH plant using genetic algorithm , 2005, Eng. Appl. Artif. Intell..

[103]  Ignacio E. Grossmann,et al.  Una Revisión del Estado del Arte en Optimización , 2007 .

[104]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[105]  K. Deb An Efficient Constraint Handling Method for Genetic Algorithms , 2000 .

[106]  Qingfu Zhang,et al.  Multiobjective evolutionary algorithms: A survey of the state of the art , 2011, Swarm Evol. Comput..

[107]  Bernhard Sendhoff,et al.  Robust Optimization - A Comprehensive Survey , 2007 .

[108]  Leandro dos Santos Coelho,et al.  Tuning of PID controller based on a multiobjective genetic algorithm applied to a robotic manipulator , 2012, Expert Syst. Appl..

[109]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[110]  Alfred Inselberg,et al.  The plane with parallel coordinates , 1985, The Visual Computer.