Exchange lemmas 1: Deng's lemma
暂无分享,去创建一个
[1] Peter Szmolyan,et al. Geometric Analysis of the Singularly Perturbed Planar Fold , 2001 .
[2] Neil Fenichel. Geometric singular perturbation theory for ordinary differential equations , 1979 .
[3] P. Szmolyan,et al. Rarefactions in the Dafermos Regularization of a System of Conservation Laws , 2008 .
[4] Weishi Liu,et al. Exchange Lemmas for Singular Perturbation Problems with Certain Turning Points , 2000 .
[5] Christopher K. R. T. Jones,et al. Tracking invariant manifolds up to exponentially small errors , 1996 .
[6] Christopher K. R. T. Jones,et al. A Primer on the Exchange Lemma for Fast-Slow Systems , 2001 .
[7] B. Deng,et al. Homoclinic bifurcations with nonhyperbolic equilbria , 1990 .
[8] Pavol Brunovský,et al. Cr-Inclination Theorems for Singularly Perturbed Equations , 1999 .
[9] Freddy Dumortier,et al. Canard Cycles and Center Manifolds , 1996 .
[10] Christopher K. R. T. Jones,et al. Invariant manifolds and singularly perturbed boundary value problems , 1994 .
[11] Xiao-Biao Lin,et al. Using Melnikov's method to solve Silnikov's problems , 1990, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[12] Stephen Schecter,et al. Exchange lemmas 2: General Exchange Lemma , 2008 .
[13] P. Szmolyan,et al. Canards in R3 , 2001 .
[14] Athanasios E. Tzavaras,et al. Wave interactions and variation estimates for self-similar zero-viscosity limits in systems of conservation laws , 1996 .
[15] Stephen Schecter,et al. Stability of Self-Similar Solutions of the Dafermos Regularization of a System of Conservation Laws , 2003, SIAM J. Math. Anal..
[16] Stephen Schecter,et al. Composite Waves in the Dafermos Regularization , 2004 .
[17] Stephen Schecter,et al. Existence of Dafermos profiles for singular shocks , 2004 .
[18] S. Schecter. Eigenvalues of Self-Similar Solutions of the Dafermos Regularization of a System of Conservation Laws via Geometric Singular Perturbation Theory , 2006 .
[19] B. Sandstede,et al. Fast and Slow Waves in the FitzHugh–Nagumo Equation , 1997 .
[20] Christopher Jones,et al. Geometric singular perturbation theory , 1995 .
[21] Constantine M. Dafermos,et al. Solution of the Riemann problem for a class of hyperbolic systems of conservation laws by the viscosity method , 1973 .
[22] Christopher K. R. T. Jones,et al. Tracking invariant manifolds with di erential forms in singularly per-turbed systems , 1994 .
[23] F. Dumortier,et al. Geometric Singular Perturbation Theory Beyond Normal Hyperbolicity , 2001 .
[24] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[25] Nikola Popović,et al. Rigorous asymptotic expansions for Lagerstrom's model equation—a geometric approach , 2004 .