Exchange lemmas 1: Deng's lemma

Abstract Deng's lemma gives estimates on the behavior of solutions of ordinary differential equations in the neighborhood of a partially hyperbolic equilibrium. We prove a generalization in which “partially hyperbolic equilibrium” is replaced by “normally hyperbolic invariant manifold.”

[1]  Peter Szmolyan,et al.  Geometric Analysis of the Singularly Perturbed Planar Fold , 2001 .

[2]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[3]  P. Szmolyan,et al.  Rarefactions in the Dafermos Regularization of a System of Conservation Laws , 2008 .

[4]  Weishi Liu,et al.  Exchange Lemmas for Singular Perturbation Problems with Certain Turning Points , 2000 .

[5]  Christopher K. R. T. Jones,et al.  Tracking invariant manifolds up to exponentially small errors , 1996 .

[6]  Christopher K. R. T. Jones,et al.  A Primer on the Exchange Lemma for Fast-Slow Systems , 2001 .

[7]  B. Deng,et al.  Homoclinic bifurcations with nonhyperbolic equilbria , 1990 .

[8]  Pavol Brunovský,et al.  Cr-Inclination Theorems for Singularly Perturbed Equations , 1999 .

[9]  Freddy Dumortier,et al.  Canard Cycles and Center Manifolds , 1996 .

[10]  Christopher K. R. T. Jones,et al.  Invariant manifolds and singularly perturbed boundary value problems , 1994 .

[11]  Xiao-Biao Lin,et al.  Using Melnikov's method to solve Silnikov's problems , 1990, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[12]  Stephen Schecter,et al.  Exchange lemmas 2: General Exchange Lemma , 2008 .

[13]  P. Szmolyan,et al.  Canards in R3 , 2001 .

[14]  Athanasios E. Tzavaras,et al.  Wave interactions and variation estimates for self-similar zero-viscosity limits in systems of conservation laws , 1996 .

[15]  Stephen Schecter,et al.  Stability of Self-Similar Solutions of the Dafermos Regularization of a System of Conservation Laws , 2003, SIAM J. Math. Anal..

[16]  Stephen Schecter,et al.  Composite Waves in the Dafermos Regularization , 2004 .

[17]  Stephen Schecter,et al.  Existence of Dafermos profiles for singular shocks , 2004 .

[18]  S. Schecter Eigenvalues of Self-Similar Solutions of the Dafermos Regularization of a System of Conservation Laws via Geometric Singular Perturbation Theory , 2006 .

[19]  B. Sandstede,et al.  Fast and Slow Waves in the FitzHugh–Nagumo Equation , 1997 .

[20]  Christopher Jones,et al.  Geometric singular perturbation theory , 1995 .

[21]  Constantine M. Dafermos,et al.  Solution of the Riemann problem for a class of hyperbolic systems of conservation laws by the viscosity method , 1973 .

[22]  Christopher K. R. T. Jones,et al.  Tracking invariant manifolds with di erential forms in singularly per-turbed systems , 1994 .

[23]  F. Dumortier,et al.  Geometric Singular Perturbation Theory Beyond Normal Hyperbolicity , 2001 .

[24]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[25]  Nikola Popović,et al.  Rigorous asymptotic expansions for Lagerstrom's model equation—a geometric approach , 2004 .