Discrete Transparent Boundary Conditions for General Schrödinger-type Equations

Transparent boundary conditions (TBCs) for general Schrodinger-type equations on a bounded domain can be derived explicitly under the assumption that the given potential V is constant on the exterior of that domain. In 1D these boundary conditions are non-local in time (of memory type).

[1]  A. V. Popov,et al.  Implementation of transparent boundaries for numerical solution of the Schrödinger equation , 1991 .

[2]  D. E. Amos Algorithm 644: A portable package for Bessel functions of a complex argument and nonnegative order , 1986, TOMS.

[3]  R. Greene The rational approximation to the acoustic wave equation with bottom interaction , 1984 .

[4]  Matthias Ehrhardt,et al.  Discrete Transparent Boundary Conditions for Wide Angle Parabolic Equations in Underwater Acoustics , 1998 .

[5]  Dongwoo Sheen,et al.  FREQUENCY DOMAIN TREATMENT OF ONE-DIMENSIONAL SCALAR WAVES , 1993 .

[6]  David J. Thomson,et al.  AN EXACT RADIATION CONDITION FOR USE WITH THE A POSTERIORI PE METHOD , 1994 .

[7]  Frank Schmidt,et al.  Discrete transparent boundary conditions for Schrödinger-type equations , 1997 .

[8]  P. Schultz,et al.  Fundamentals of geophysical data processing , 1979 .

[9]  Ding Lee,et al.  A finite‐difference treatment of interface conditions for the parabolic wave equation: The irregular interface , 1982 .

[10]  S. T. McDaniel,et al.  Ocean Acoustic Propagation by Finite Difference Methods , 1988 .

[11]  Michael D. Collins,et al.  A higher‐order parabolic equation for wave propagation in an ocean overlying an elastic bottom , 1989 .

[12]  Michael I. Taroudakis,et al.  A new method for a realistic treatment of the sea bottom in the parabolic approximation , 1992 .

[13]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[14]  Lippens,et al.  Directional coupling in dual-branch electron-waveguide junctions. , 1995, Physical review. B, Condensed matter.

[15]  Georgios E. Zouraris,et al.  Error Estimates for Finite Difference Methods for a Wide Angle Parabolic Equation , 1996 .

[16]  Anton Arnold,et al.  Numerically Absorbing Boundary Conditions for Quantum Evolution Equations , 1998, VLSI Design.

[17]  Jon F. Claerbout,et al.  Coarse grid calculations of waves in inhomogeneous media with application to delineation of complicated seismic structure , 1970 .

[18]  Björn Engquist,et al.  Higher order paraxial wave equation approximations in heterogenous media , 1988 .

[19]  Frank Schmidt,et al.  Discrete transparent boundary conditions for the numerical solution of Fresnel's equation , 1995 .

[20]  Fred D. Tappert,et al.  The parabolic approximation method , 1977 .

[21]  Frensley,et al.  Non-Markovian open-system boundary conditions for the time-dependent Schrödinger equation. , 1994, Physical review. B, Condensed matter.