Experiments with Query Expansion for Entity Finding

Query expansion techniques have proved to have an impact on retrieval performance across many retrieval tasks. This paper reports research on query expansion in the entity finding domain. We used a number of methods for query formulation including thesaurus-based, relevance feedback, and exploiting NLP structure. We incorporated the query expansion component as part of our entity finding pipeline and report the results of the aforementioned models on the CERC collection.

[1]  Hinrich Schütze,et al.  Book Reviews: Foundations of Statistical Natural Language Processing , 1999, CL.

[2]  Craig MacDonald,et al.  High Quality Expertise Evidence for Expert Search , 2008, ECIR.

[3]  Craig MacDonald,et al.  Voting for candidates: adapting data fusion techniques for an expert search task , 2006, CIKM '06.

[4]  Krishna P. Gummadi,et al.  Cognos: crowdsourcing search for topic experts in microblogs , 2012, SIGIR '12.

[5]  Craig MacDonald,et al.  The influence of the document ranking in expert search , 2009, CIKM.

[6]  W. Bruce Croft,et al.  Proximity-based document representation for named entity retrieval , 2007, CIKM '07.

[7]  Yiqun Liu,et al.  A CDD-based formal model for expert finding , 2007, CIKM '07.

[8]  Meredith Ringel Morris,et al.  SearchBuddies: Bringing Search Engines into the Conversation , 2012, ICWSM.

[9]  Djoerd Hiemstra,et al.  Modeling Documents as Mixtures of Persons for Expert Finding , 2008, ECIR.

[10]  Dawei Song,et al.  Integrating multiple windows and document features for expert finding , 2009 .

[11]  Steven Garcia,et al.  RMIT University at TREC 2008: Enterprise Track , 2008, TREC.

[12]  W. Bruce Croft,et al.  Hierarchical Language Models for Expert Finding in Enterprise Corpora , 2008, Int. J. Artif. Intell. Tools.

[13]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[14]  Craig MacDonald,et al.  Expertise drift and query expansion in expert search , 2007, CIKM '07.

[15]  Huiping Sun,et al.  CQArank: jointly model topics and expertise in community question answering , 2013, CIKM.

[16]  James Caverlee,et al.  Finding local experts on twitter , 2014, WWW '14 Companion.

[17]  Udo Kruschwitz,et al.  An Adaptive Window-Size Approach for Expert-Finding , 2013, DIR.

[18]  Eric SanJuan,et al.  Universities of Avignon and Lyon III at TREC 2008: Enterprise Track , 2008, TREC.

[19]  Çigdem Aslay,et al.  Competition-based networks for expert finding , 2013, SIGIR.

[20]  Slava M. Katz,et al.  Technical terminology: some linguistic properties and an algorithm for identification in text , 1995, Natural Language Engineering.

[21]  ChengXiang Zhai,et al.  Probabilistic Models for Expert Finding , 2007, ECIR.

[22]  Udo Kruschwitz,et al.  Exploring Adaptive Window Sizes for Entity Retrieval , 2014, ECIR.

[23]  M. de Rijke,et al.  Formal models for expert finding in enterprise corpora , 2006, SIGIR.

[24]  Yong Yu,et al.  Research on Enterprise Track of TREC 2007 at SJTU APEX Lab , 2007, TREC.

[25]  Patrice Bellot,et al.  Universities of Avignon & Lyon III a t TREC 2008: Enterprise Track , 2008 .