Linear Tracking MPC for Nonlinear Systems—Part II: The Data-Driven Case

In this article, we present a novel data-driven model predictive control (MPC) approach to control unknown nonlinear systems using only measured input–output data with closed-loop stability guarantees. Our scheme relies on the data-driven system parameterization provided by the fundamental lemma of Willems et al. We use new input–output measurements online to update the data, exploiting local linear approximations of the underlying system. We prove that our MPC scheme, which only requires solving strictly convex quadratic programs online, ensures that the closed loop (practically) converges to the (unknown) optimal reachable equilibrium that tracks a desired output reference while satisfying polytopic input constraints. As intermediate results of independent interest, we extend the fundamental lemma to affine systems and we derive novel robustness bounds w.r.t. noisy data for the open-loop optimal control problem, which are directly transferable to other data-driven MPC schemes in the literature. The applicability of our approach is illustrated with a numerical application to a continuous stirred tank reactor.

[1]  Mingzhou Yin,et al.  Maximum Likelihood Estimation in Data-Driven Modeling and Control , 2021, IEEE Transactions on Automatic Control.

[2]  Matilde Gargiani,et al.  Data-Driven Optimal Control of Affine Systems: A Linear Programming Perspective , 2022, IEEE Control Systems Letters.

[3]  Mingzhou Yin,et al.  Data-Driven Prediction with Stochastic Data: Confidence Regions and Minimum Mean-Squared Error Estimates , 2021, ArXiv.

[4]  F. Allgöwer,et al.  Linear Tracking MPC for Nonlinear Systems—Part I: The Model-Based Case , 2021, IEEE Transactions on Automatic Control.

[5]  F. Allgöwer,et al.  Robust Stability Analysis of a Simple Data-Driven Model Predictive Control Approach , 2021, IEEE Transactions on Automatic Control.

[6]  Ivan Markovsky,et al.  Bridging Direct and Indirect Data-Driven Control Formulations via Regularizations and Relaxations , 2021, IEEE Transactions on Automatic Control.

[7]  Pietro Tesi,et al.  Data-Driven Stabilization of Nonlinear Polynomial Systems With Noisy Data , 2020, IEEE Transactions on Automatic Control.

[8]  Frank Allgöwer,et al.  Provably Robust Verification of Dissipativity Properties from Data , 2020, IEEE Transactions on Automatic Control.

[9]  John Lygeros,et al.  Distributionally Robust Chance Constrained Data-Enabled Predictive Control , 2020, IEEE Transactions on Automatic Control.

[10]  Paul N. Beuchat,et al.  Data‐enabled predictive control for quadcopters , 2021, International journal of robust and nonlinear control.

[11]  Frank Allgöwer,et al.  Data-driven model predictive control: closed-loop guarantees and experimental results , 2021, Autom..

[12]  G. Ferrari-Trecate,et al.  Near-Optimal Design of Safe Output-Feedback Controllers From Noisy Data , 2021, IEEE Transactions on Automatic Control.

[13]  Jorge Cortes,et al.  Data-Driven Synthesis of Optimization-Based Controllers for Regulation of Unknown Linear Systems , 2021, 2021 60th IEEE Conference on Decision and Control (CDC).

[14]  Sofie Haesaert,et al.  Fundamental Lemma for Data-Driven Analysis of Linear Parameter-Varying Systems , 2021, 2021 60th IEEE Conference on Decision and Control (CDC).

[15]  F. Allgöwer,et al.  Data-Based System Analysis and Control of Flat Nonlinear Systems , 2021, 2021 60th IEEE Conference on Decision and Control (CDC).

[16]  Giancarlo Ferrari-Trecate,et al.  A Behavioral Input-Output Parametrization of Control Policies with Suboptimality Guarantees , 2021, 2021 60th IEEE Conference on Decision and Control (CDC).

[17]  Colin N. Jones,et al.  Koopman based data-driven predictive control , 2021, 2102.05122.

[18]  Frank Allgöwer,et al.  On the design of terminal ingredients for data-driven MPC , 2021, IFAC-PapersOnLine.

[19]  Colin N. Jones,et al.  Nonlinear Data-Enabled Prediction and Control , 2021, L4DC.

[20]  F. Allgöwer,et al.  Data-Driven Control of Nonlinear Systems: Beyond Polynomial Dynamics , 2020, 2021 60th IEEE Conference on Decision and Control (CDC).

[21]  Nikolai Matni,et al.  Data-Driven System Level Synthesis , 2020, L4DC.

[22]  Frank Allgöwer,et al.  Dissipativity verification with guarantees for polynomial systems from noisy input-state data , 2020, 2021 American Control Conference (ACC).

[23]  Frank Allgöwer,et al.  Data-Driven Model Predictive Control With Stability and Robustness Guarantees , 2019, IEEE Transactions on Automatic Control.

[24]  Frank Allgöwer,et al.  Data-Driven Stabilization of Nonlinear Systems with Rational Dynamics , 2020, ArXiv.

[25]  F. Borrelli,et al.  Control of Unknown Nonlinear Systems with Linear Time-Varying MPC , 2020, 2020 59th IEEE Conference on Decision and Control (CDC).

[26]  Juan G. Rueda-Escobedo,et al.  Data-Driven Internal Model Control of Second-Order Discrete Volterra Systems , 2020, 2020 59th IEEE Conference on Decision and Control (CDC).

[27]  F. Allgöwer,et al.  Robust Constraint Satisfaction in Data-Driven MPC , 2020, 2020 59th IEEE Conference on Decision and Control (CDC).

[28]  Johannes Kohler,et al.  A nonlinear tracking model predictive control scheme for dynamic target signals , 2019, Automatica.

[29]  Mark Cannon,et al.  Robust adaptive model predictive control: Performance and parameter estimation , 2019, International Journal of Robust and Nonlinear Control.

[30]  F. Allgöwer,et al.  Data-Driven Tracking MPC for Changing Setpoints , 2019, IFAC-PapersOnLine.

[31]  Frank Allgöwer,et al.  A trajectory-based framework for data-driven system analysis and control , 2019, 2020 European Control Conference (ECC).

[32]  Juraj Kabzan,et al.  Cautious Model Predictive Control Using Gaussian Process Regression , 2017, IEEE Transactions on Control Systems Technology.

[33]  David Muñoz de la Peña,et al.  Data Driven Control: An Offset Free Approach , 2019, 2019 18th European Control Conference (ECC).

[34]  John Lygeros,et al.  Data-Enabled Predictive Control for Grid-Connected Power Converters , 2019, 2019 IEEE 58th Conference on Decision and Control (CDC).

[35]  John Lygeros,et al.  Data-Enabled Predictive Control: In the Shallows of the DeePC , 2018, 2019 18th European Control Conference (ECC).

[36]  Benjamin Recht,et al.  A Tour of Reinforcement Learning: The View from Continuous Control , 2018, Annu. Rev. Control. Robotics Auton. Syst..

[37]  Matthias Althoff,et al.  Reachset Model Predictive Control for Disturbed Nonlinear Systems , 2018, 2018 IEEE Conference on Decision and Control (CDC).

[38]  Antonio Ferramosca,et al.  Nonlinear MPC for Tracking Piece-Wise Constant Reference Signals , 2018, IEEE Transactions on Automatic Control.

[39]  Igor Mezic,et al.  Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control , 2016, Autom..

[40]  Hua Yang,et al.  A data-driven predictive controller design based on reduced Hankel matrix , 2015, 2015 10th Asian Control Conference (ASCC).

[41]  Frank Allgöwer,et al.  Inherent robustness properties of quasi-infinite horizon nonlinear model predictive control , 2014, Autom..

[42]  Stephen J. Roberts,et al.  Conservative decision-making and interference in uncertain dynamical systems , 2014 .

[43]  Zhuo Wang,et al.  From model-based control to data-driven control: Survey, classification and perspective , 2013, Inf. Sci..

[44]  Manfred Morari,et al.  Nonlinear offset-free model predictive control , 2012, Autom..

[45]  David Q. Mayne,et al.  Tube‐based robust nonlinear model predictive control , 2011 .

[46]  Paolo Rapisarda,et al.  Data-driven simulation and control , 2008, Int. J. Control.

[47]  Eduardo F. Camacho,et al.  MPC for tracking piecewise constant references for constrained linear systems , 2008, Autom..

[48]  Maciej Lawrynczuk,et al.  A Computationally Efficient Nonlinear Predictive Control Algorithm with RBF Neural Models and Its Application , 2007, RSEISP.

[49]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[50]  Bart De Moor,et al.  A note on persistency of excitation , 2005, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[51]  David Q. Mayne,et al.  Constrained state estimation for nonlinear discrete-time systems: stability and moving horizon approximations , 2003, IEEE Trans. Autom. Control..

[52]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[53]  M. Milanese,et al.  Set membership identification of nonlinear systems , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[54]  Lennart Ljung,et al.  Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..

[55]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .