Multimodality and nanoparticles in medical imaging.

A number of medical imaging techniques are used heavily in the provision of spatially resolved information on disease and physiological status and accordingly play a critical role in clinical diagnostics and subsequent treatment. Though, for most imaging modes, contrast is potentially enhanced through the use of contrast agents or improved hardware or imaging protocols, no single methodology provides, in isolation, a detailed mapping of anatomy, disease markers or physiological status. In recent years, the concept of complementing the strengths of one imaging modality with those of another has come to the fore and been further bolstered by the development of fused instruments such as PET/CT and PET/MRI stations. Coupled with the continual development in imaging hardware has been a surge in reports of contrast agents bearing multiple functionality, potentially providing not only a powerful and highly sensitised means of co-localising physiological/disease status and anatomy, but also the tracking and delineation of multiple markers and indeed subsequent or simultaneous highly localized therapy ("theragnostics").

[1]  J. Ying,et al.  Synthesis of silica-coated semiconductor and magnetic quantum dots and their use in the imaging of live cells. , 2007, Angewandte Chemie.

[2]  T. Brady,et al.  Preparation and water relaxation properties of proteins labeled with paramagnetic metal chelates. , 1985, Magnetic resonance imaging.

[3]  Weili Lin,et al.  Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents. , 2006, Journal of the American Chemical Society.

[4]  Marcelino Bernardo,et al.  Gadolinium-rhodamine nanoparticles for cell labeling and tracking via magnetic resonance and optical imaging. , 2005, Bioconjugate chemistry.

[5]  Ralph Weissleder,et al.  Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. , 2003, The New England journal of medicine.

[6]  Klaas Nicolay,et al.  Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe. , 2006, Nano letters.

[7]  Chun Li,et al.  Dual optical and nuclear imaging in human melanoma xenografts using a single targeted imaging probe. , 2006, Nuclear medicine and biology.

[8]  David A Jaffray,et al.  Multimodal Contrast Agent for Combined Computed Tomography and Magnetic Resonance Imaging Applications , 2006, Investigative radiology.

[9]  Alain Borel,et al.  High relaxivity confined to a small molecular space: a metallostar-based, potential MRI contrast agent. , 2005, Angewandte Chemie.

[10]  V. Jordan,et al.  Development and evolution of therapies targeted to the estrogen receptor for the treatment and prevention of breast cancer , 2007, Steroids.

[11]  K. Uğurbil,et al.  Cell-penetrating peptides and peptide nucleic acid-coupled MRI contrast agents: evaluation of cellular delivery and target binding. , 2009, Bioconjugate chemistry.

[12]  In Su Lee,et al.  Hollow manganese oxide nanoparticles as multifunctional agents for magnetic resonance imaging and drug delivery. , 2009, Angewandte Chemie.

[13]  Wei Yang,et al.  Rational design of protein-based MRI contrast agents. , 2008, Journal of the American Chemical Society.

[14]  Charles Pelizzari,et al.  A novel functional CT contrast agent for molecular imaging of cancer , 2010, Physics in medicine and biology.

[15]  Daniel Scherman,et al.  Noncovalent functionalization of carbon nanotubes with amphiphilic gd3+ chelates: toward powerful t1 and t2 MRI contrast agents. , 2008, Nano letters.

[16]  Michael E. Phelps,et al.  MOLECULAR IMAGING WITH POSITRON EMISSION TOMOGRAPHY , 2003 .

[17]  Luis M. De Leon-Rodriguez,et al.  The synthesis and chelation chemistry of DOTA-peptide conjugates. , 2008, Bioconjugate chemistry.

[18]  A. Polglase,et al.  A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract. , 2005, Gastrointestinal endoscopy.

[19]  Wenbin Lin,et al.  Surface modification and functionalization of nanoscale metal-organic frameworks for controlled release and luminescence sensing. , 2007, Journal of the American Chemical Society.

[20]  Bruce D Hammock,et al.  Magnetic/luminescent core/shell particles synthesized by spray pyrolysis and their application in immunoassays with internal standard , 2007, Nanotechnology.

[21]  P. Lauterbur,et al.  Ferromagnetic particles as contrast agents for magnetic resonance imaging of liver and spleen , 1986, Magnetic resonance in medicine.

[22]  N. Goto,et al.  Restored cardiac conditions and left ventricular function after parathyroidectomy in a hemodialysis patient. Parathyroidectomy improves cardiac fatty acid metabolism assessed by 123I-BMIPP. , 2009, Circulation journal : official journal of the Japanese Circulation Society.

[23]  Sun-Hee Kim,et al.  Visualization of Tumor Angiogenesis Using MR Imaging Contrast Agent Gd-DTPA-anti-VEGF Receptor 2 Antibody Conjugate in a Mouse Tumor Model , 2010, Korean journal of radiology.

[24]  Bing Xu,et al.  Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. , 2009, Accounts of chemical research.

[25]  Yongmin Chang,et al.  Gold nanoparticles functionalized by gadolinium-DTPA conjugate of cysteine as a multimodal bioimaging agent. , 2010, Bioorganic & medicinal chemistry letters.

[26]  Rui Guo,et al.  X-ray Attenuation Property of Dendrimer-Entrapped Gold Nanoparticles , 2010 .

[27]  K. Raymond,et al.  High-relaxivity MRI contrast agents: where coordination chemistry meets medical imaging. , 2008, Angewandte Chemie.

[28]  É. Tóth,et al.  GdIII complexes with fast water exchange and high thermodynamic stability: potential building blocks for high-relaxivity MRI contrast agents. , 2003, Chemistry.

[29]  Angelique Louie,et al.  Multimodality imaging probes: design and challenges. , 2010, Chemical reviews.

[30]  Wenbin Lin,et al.  Manganese-based nanoscale metal-organic frameworks for magnetic resonance imaging. , 2008, Journal of the American Chemical Society.

[31]  J F Hainfeld,et al.  Gold nanoparticles: a new X-ray contrast agent. , 2006, The British journal of radiology.

[32]  E. Hoffman,et al.  Long-residence-time nano-scale liposomal iohexol for X-ray-based blood pool imaging. , 2003, Academic radiology.

[33]  Michael J. Welch,et al.  In vivo evaluation of (64)Cu-labeled magnetic nanoparticles as a dual-modality PET/MR imaging agent. , 2010, Bioconjugate chemistry.

[34]  M. Welch,et al.  The development of estrogen and progestin radiopharmaceuticals for imaging breast cancer. , 1997, Anticancer research.

[35]  Arend Heerschap,et al.  (19)F MRI for quantitative in vivo cell tracking. , 2010, Trends in biotechnology.

[36]  Christopher H Contag,et al.  Understanding immune cell trafficking patterns via in vivo bioluminescence imaging , 2002, Journal of cellular biochemistry. Supplement.

[37]  L. Helm,et al.  Dinuclear, bishydrated Gd(III) polyaminocarboxylates with a rigid xylene core display remarkable proton relaxivities. , 2005, Inorganic chemistry.

[38]  V. Dilsizian,et al.  Metabolic Imaging With &bgr;-Methyl-p-[123I]-Iodophenyl-Pentadecanoic Acid Identifies Ischemic Memory After Demand Ischemia , 2005, Circulation.

[39]  Klaas Nicolay,et al.  Nanoparticulate assemblies of amphiphiles and diagnostically active materials for multimodality imaging. , 2009, Accounts of chemical research.

[40]  M J Welch,et al.  Quantification of regional myocardial blood flow in vivo with H2150* , 2005 .

[41]  J. Mintorovitch,et al.  Comparison of Magnetic Properties of MRI Contrast Media Solutions at Different Magnetic Field Strengths , 2005, Investigative radiology.

[42]  Weihong Tan,et al.  Synthesis and Characterization of Fluorescent, Radio‐Opaque, and Paramagnetic Silica Nanoparticles for Multimodal Bioimaging Applications , 2005 .

[43]  Chad A Mirkin,et al.  Multimodal gadolinium-enriched DNA-gold nanoparticle conjugates for cellular imaging. , 2009, Angewandte Chemie.

[44]  Klaas Nicolay,et al.  Lipid‐based nanoparticles for contrast‐enhanced MRI and molecular imaging , 2006, NMR in biomedicine.

[45]  Sharon Bloch,et al.  Monomolecular multimodal fluorescence-radioisotope imaging agents. , 2005, Bioconjugate chemistry.

[46]  E. Ahrens,et al.  Fluorine-containing nanoemulsions for MRI cell tracking. , 2009, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[47]  A. Klibanov,et al.  Detection of Individual Microbubbles of Ultrasound Contrast Agents: Imaging of Free-Floating and Targeted Bubbles , 2004, Investigative radiology.

[48]  R V Shohet,et al.  Echocardiographic destruction of albumin microbubbles directs gene delivery to the myocardium. , 2000, Circulation.

[49]  Benjamin R. Jarrett,et al.  Gold-coated iron nanoparticles: a novel magnetic resonance agent for T1 and T2 weighted imaging , 2006 .

[50]  Marcelino Bernardo,et al.  Dendrimer-based nanoprobe for dual modality magnetic resonance and fluorescence imaging. , 2006, Nano letters.

[51]  B. Xiang,et al.  Cu2+-labeled, SPION loaded porous silica nanoparticles for cell labeling and multifunctional imaging probes. , 2010, Biomaterials.

[52]  Jung Ho Yu,et al.  Designed Fabrication of a Multifunctional Polymer Nanomedical Platform for Simultaneous Cancer‐ Targeted Imaging and Magnetically Guided Drug Delivery , 2008 .

[53]  Z. Fayad,et al.  A fluorescent, paramagnetic and PEGylated gold/silica nanoparticle for MRI, CT and fluorescence imaging. , 2010, Contrast Media & Molecular Imaging.

[54]  J. Carlsson,et al.  Tumor imaging using a picomolar affinity HER2 binding affibody molecule. , 2006, Cancer research.

[55]  Joe W. Gray,et al.  Paramagnetic Silica-Coated Nanocrystals as an Advanced MRI Contrast Agent , 2007 .

[56]  Jodie L. Conyers,et al.  An iodinated liposomal computed tomographic contrast agent prepared from a diiodophosphatidylcholine lipid. , 2009, Nanomedicine : nanotechnology, biology, and medicine.

[57]  S. Achilefu,et al.  Spectral Properties of Pro-multimodal Imaging Agents Derived from a NIR Dye and a Metal Chelator , 2005, Photochemistry and photobiology.

[58]  S. Nie,et al.  Quantum Dot Nanocrystals for In Vivo Molecular and Cellular Imaging¶ , 2004 .

[59]  Jinwoo Cheon,et al.  A hybrid nanoparticle probe for dual-modality positron emission tomography and magnetic resonance imaging. , 2008, Angewandte Chemie.

[60]  Hisataka Kobayashi,et al.  Dendrimer-based contrast agents for molecular imaging. , 2008, Current topics in medicinal chemistry.

[61]  Konstantin V Sokolov,et al.  Hybrid plasmonic magnetic nanoparticles as molecular specific agents for MRI/optical imaging and photothermal therapy of cancer cells , 2007 .

[62]  R E Jacobs,et al.  Fluorescently detectable magnetic resonance imaging agents. , 1998, Bioconjugate chemistry.

[63]  K. Watkin,et al.  Investigations into the physicochemical properties of dextran small particulate gadolinium oxide nanoparticles. , 2006, Academic radiology.

[64]  M. Moseley,et al.  Comparison of Initial Biodistribution Patterns of Gd‐DTPA and Albumin‐(Gd‐DTPA) Using Rapid Spin Echo MR Imaging , 1987, Journal of computer assisted tomography.

[65]  Costas Balas,et al.  Review of biomedical optical imaging—a powerful, non-invasive, non-ionizing technology for improving in vivo diagnosis , 2009 .

[66]  M. Schwaiger,et al.  Assessment of cardiac sympathetic neuronal function using PET imaging , 2004, Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology.

[67]  Martin W. Brechbiel,et al.  Metal-chelate-dendrimer-antibody constructs for use in radioimmunotherapy and imaging , 1994 .

[68]  C. Robic,et al.  Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. , 2008, Chemical reviews.

[69]  L. Helm,et al.  Novel DOTA-based prochelator for divalent peptide vectorization: synthesis of dimeric bombesin analogues for multimodality tumor imaging and therapy. , 2008, Chemical communications.

[70]  T. Kodadek,et al.  Magnetic resonance imaging detects a specific peptide-protein binding event. , 2002, Journal of the American Chemical Society.

[71]  A. Tanimoto,et al.  Gadolinium-based hybrid nanoparticles as a positive MR contrast agent. , 2006, Journal of the American Chemical Society.

[72]  David A Mankoff,et al.  Tumor Receptor Imaging , 2008, Journal of Nuclear Medicine.

[73]  Taeghwan Hyeon,et al.  Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. , 2009, Chemical Society reviews.

[74]  P. Hals,et al.  Biodistribution and toxicity of MR imaging contrast media , 1993, Journal of magnetic resonance imaging : JMRI.

[75]  Ambika Bumb,et al.  Macromolecules, dendrimers, and nanomaterials in magnetic resonance imaging: the interplay between size, function, and pharmacokinetics. , 2010, Chemical reviews.

[76]  P. Perriat,et al.  Hybrid gadolinium oxide nanoparticles: multimodal contrast agents for in vivo imaging. , 2007, Journal of the American Chemical Society.

[77]  M. Janier,et al.  Evaluation of Gd-DOTA-labeled dextran polymer as an intravascular MR contrast agent for myocardial perfusion. , 1998, Academic radiology.

[78]  M. Polášek,et al.  Lanthanide(III) complexes of a pyridine N-oxide analogue of DOTA: exclusive M isomer formation induced by a six-membered chelate ring. , 2004, Chemical communications.

[79]  P. L. Jager,et al.  Biodistribution of 89Zr‐trastuzumab and PET Imaging of HER2‐Positive Lesions in Patients With Metastatic Breast Cancer , 2010, Clinical pharmacology and therapeutics.

[80]  R. Prosser,et al.  Water-Soluble GdF3 and GdF3/LaF3 NanoparticlesPhysical Characterization and NMR Relaxation Properties , 2006 .

[81]  Angelique Y. Louie,et al.  Core/shell quantum dots with high relaxivity and photoluminescence for multimodality imaging. , 2007 .

[82]  R. Lauffer,et al.  Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications. , 1999, Chemical reviews.

[83]  M. Schwaiger,et al.  Imaging cardiac neuronal function and dysfunction , 2006, Current cardiology reports.

[84]  D Artemov,et al.  Imaging of cationic multifunctional liposome-mediated delivery of COX-2 siRNA , 2009, Cancer Gene Therapy.

[85]  P. Malmström,et al.  Labelling chemistry and characterization of [90Y/177Lu]-DOTA-ZHER2:342-3 Affibody molecule, a candidate agent for locoregional treatment of urinary bladder carcinoma. , 2007, International journal of molecular medicine.

[86]  M. Ogan,et al.  Albumin labeled with Gd-DTPA: an intravascular contrast-enhancing agent for magnetic resonance blood pool imaging: preparation and characterization. , 1987, Investigative radiology.

[87]  T. Hyeon,et al.  Nanostructured T1 MRI contrast agents , 2009 .

[88]  G. Zonios,et al.  Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo. , 1999, Applied optics.

[89]  S. Ludtke,et al.  Superparamagnetic gadonanotubes are high-performance MRI contrast agents. , 2005, Chemical communications.

[90]  Z. Fayad,et al.  Well-defined, multifunctional nanostructures of a paramagnetic lipid and a lipopeptide for macrophage imaging. , 2009, Journal of the American Chemical Society.

[91]  Enzo Terreno,et al.  A high relaxivity Gd(III)DOTA-DSPE-based liposomal contrast agent for magnetic resonance imaging. , 2009, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[92]  Linda A Landon,et al.  Combinatorial discovery of tumor targeting peptides using phage display , 2003, Journal of cellular biochemistry.

[93]  Taeghwan Hyeon,et al.  Inorganic Nanoparticles for MRI Contrast Agents , 2009 .

[94]  Robert Neuhauser,et al.  Photoluminescence from Single Semiconductor Nanostructures , 1999 .

[95]  S. Achilefu,et al.  Agonist-antagonist dilemma in molecular imaging: evaluation of a monomolecular multimodal imaging agent for the somatostatin receptor. , 2008, Bioconjugate chemistry.

[96]  D. A. Christopher,et al.  Advances in ultrasound biomicroscopy. , 2000, Ultrasound in medicine & biology.

[97]  Dario Neri,et al.  Immunoscintigraphic detection of the ED-B domain of fibronectin, a marker of angiogenesis, in patients with cancer. , 2003, Clinical cancer research : an official journal of the American Association for Cancer Research.

[98]  T. Fleming,et al.  Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. , 2001, The New England journal of medicine.

[99]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[100]  S. Gambhir,et al.  Molecular imaging in living subjects: seeing fundamental biological processes in a new light. , 2003, Genes & development.

[101]  S. Nie,et al.  In vivo cancer targeting and imaging with semiconductor quantum dots , 2004, Nature Biotechnology.

[102]  M. Port,et al.  P792: a rapid clearance blood pool agent for magnetic resonance imaging: preliminary results , 2001, Magnetic Resonance Materials in Physics, Biology and Medicine.

[103]  Ralph Weissleder,et al.  A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. , 2003, Cancer research.

[104]  J. Kuszak,et al.  Development of inherently echogenic liposomes as an ultrasonic contrast agent. , 1996, Journal of pharmaceutical sciences.

[105]  Taeghwan Hyeon,et al.  Uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery. , 2010, Journal of the American Chemical Society.

[106]  G. Curran,et al.  Design and chemical synthesis of a magnetic resonance contrast agent with enhanced in vitro binding, high blood-brain barrier permeability, and in vivo targeting to Alzheimer's disease amyloid plaques. , 2004, Biochemistry.

[107]  Donghoon Lee,et al.  Optical and MRI multifunctional nanoprobe for targeting gliomas. , 2005, Nano letters.

[108]  Peter Caravan,et al.  Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. , 2006, Chemical Society reviews.

[109]  V. Prasad,et al.  Molecular Imaging of HER2-Expressing Malignant Tumors in Breast Cancer Patients Using Synthetic 111In- or 68Ga-Labeled Affibody Molecules , 2010, Journal of Nuclear Medicine.

[110]  R. Pehrson,et al.  Synthetic affibody molecules: a novel class of affinity ligands for molecular imaging of HER2-expressing malignant tumors. , 2007, Cancer research.

[111]  P. Rustin,et al.  Tricarboxylic acid cycle dysfunction as a cause of human diseases and tumor formation. , 2006, American journal of physiology. Cell physiology.

[112]  Dmitri Artemov,et al.  Magnetic resonance molecular imaging of the HER-2/neu receptor. , 2003, Cancer research.

[113]  Monty Liong,et al.  Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. , 2008, ACS nano.

[114]  D. Mankoff Molecular imaging as a tool for translating breast cancer science , 2008, Breast Cancer Research.

[115]  P. Merlet,et al.  Increased myocardial muscarinic receptor density in idiopathic dilated cardiomyopathy: an in vivo PET study. , 1997, Circulation.

[116]  R. B. Swenson,et al.  Perfluoroctyl bromide as a blood pool contrast agent for computed tomographic angiography. , 1994, Academic radiology.

[117]  Jung Ho Yu,et al.  Generalized fabrication of multifunctional nanoparticle assemblies on silica spheres. , 2006, Angewandte Chemie.

[118]  Yong-Kweon Kim,et al.  Multifunctional silver-embedded magnetic nanoparticles as SERS nanoprobes and their applications. , 2010, Small.

[119]  Weili Lin,et al.  Mesoporous silica nanospheres as highly efficient MRI contrast agents. , 2008, Journal of the American Chemical Society.

[120]  S A Wickline,et al.  Targeted ultrasonic contrast agents for molecular imaging and therapy. , 2003, Progress in cardiovascular diseases.

[121]  G. Radda,et al.  Molecular imaging perspectives , 2005, Journal of The Royal Society Interface.

[122]  Weili Lin,et al.  Self-assembled hybrid nanoparticles for cancer-specific multimodal imaging. , 2007, Journal of the American Chemical Society.

[123]  I. Carrió Cardiac neurotransmission imaging. , 2001, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[124]  David R Vera,et al.  A molecular CT blood pool contrast agent. , 2002, Academic radiology.

[125]  D. C. Agrawal,et al.  Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media , 2007 .

[126]  N. Logothetis,et al.  A new class of Gd-based DO3A-ethylamine-derived targeted contrast agents for MR and optical imaging. , 2006, Bioconjugate chemistry.

[127]  A. Seiyama,et al.  Gd3+-functionalized near-infrared quantum dots for in vivo dual modal (fluorescence/magnetic resonance) imaging. , 2008, Chemical communications.

[128]  I. Solomon Relaxation Processes in a System of Two Spins , 1955 .

[129]  Shuyan Song,et al.  Novel multifunctional nanocomposites: magnetic mesoporous silica nanospheres covalently bonded with near-infrared luminescent lanthanide complexes. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[130]  Francesco M Veronese,et al.  PEGylation, successful approach to drug delivery. , 2005, Drug discovery today.

[131]  Teodor Veres,et al.  Polyethylene glycol-covered ultra-small Gd2O3 nanoparticles for positive contrast at 1.5 T magnetic resonance clinical scanning , 2007 .

[132]  Chen Chang,et al.  Multifunctional composite nanoparticles: Magnetic, luminescent, and mesoporous , 2006 .

[133]  Sophie Laurent,et al.  Classification and basic properties of contrast agents for magnetic resonance imaging. , 2009, Contrast media & molecular imaging.

[134]  Albert J. Sinusas,et al.  PET and SPECT in cardiovascular molecular imaging , 2010, Nature Reviews Cardiology.

[135]  K. Yoneyama,et al.  123I-BMIPP delayed scintigraphic imaging in patients with chronic heart failure , 2008, Annals of nuclear medicine.

[136]  M. Schwaiger,et al.  Measurement of regional myocardial blood flow with N-13 ammonia and positron-emission tomography in intact dogs. , 1985, Journal of the American College of Cardiology.

[137]  L. Helm,et al.  Rigid MIIL2Gd2III (M = Fe, Ru) complexes of a terpyridine-based heteroditopic chelate: a class of candidates for MRI contrast agents. , 2005, Journal of the American Chemical Society.

[138]  J. Shively,et al.  An improved method for conjugating monoclonal antibodies with N-hydroxysulfosuccinimidyl DOTA. , 2001, Bioconjugate chemistry.

[139]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[140]  Sung Tae Kim,et al.  Development of a T1 contrast agent for magnetic resonance imaging using MnO nanoparticles. , 2007, Angewandte Chemie.

[141]  I. Arias,et al.  Use of an asialoglycoprotein receptor‐targeted magnetic resonance contrast agent to study changes in receptor biology during liver regeneration and endotoxemia in rats , 1996, Hepatology.

[142]  R. Coatney,et al.  Ultrasound imaging: principles and applications in rodent research. , 2001, ILAR journal.

[143]  David A. Jaffray,et al.  In Vivo Performance of a Liposomal Vascular Contrast Agent for CT and MR-Based Image Guidance Applications , 2007, Pharmaceutical Research.

[144]  S. Gambhir,et al.  Optimizing radiolabeled engineered anti-p185HER2 antibody fragments for in vivo imaging. , 2005, Cancer research.

[145]  Weili Lin,et al.  Hybrid silica nanoparticles for multimodal imaging. , 2007, Angewandte Chemie.

[146]  E. Purcell,et al.  Relaxation Effects in Nuclear Magnetic Resonance Absorption , 1948 .

[147]  Vladimir Tolmachev,et al.  Disruption of HER2 signalling by the monoclonal antibody trastuzumab or the tyrosine kinase inhibitor lapatinib improves survival of patients with metastatic breast , 2010 .

[148]  Andrew D. Miller,et al.  Bimodal paramagnetic and fluorescent liposomes for cellular and tumor magnetic resonance imaging. , 2008, Bioconjugate chemistry.

[149]  J. Seppenwoolde,et al.  Lanthanide-loaded liposomes for multimodality imaging and therapy. , 2006, Cancer biotherapy & radiopharmaceuticals.

[150]  J. Knuuti,et al.  Positron emission tomography and molecular imaging , 2008, Heart.

[151]  L. Sklar,et al.  Effect of DOTA position on melanoma targeting and pharmacokinetic properties of 111In-labeled lactam bridge-cyclized alpha-melanocyte stimulating hormone peptide. , 2009, Bioconjugate chemistry.

[152]  A. D. Watson,et al.  Metal-Based X-ray Contrast Media. , 1999, Chemical reviews.

[153]  A. Bjørnerud,et al.  NC100150 injection, a preparation of optimized iron oxide nanoparticles for positive‐contrast MR angiography , 2000, Journal of magnetic resonance imaging : JMRI.

[154]  Taeghwan Hyeon,et al.  Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. , 2008, Angewandte Chemie.

[155]  Jinwoo Cheon,et al.  Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology. , 2008, Accounts of chemical research.

[156]  E C Wiener,et al.  Development of a tumor-targeting MR contrast agent using the high-affinity folate receptor: work in progress. , 2000, Investigative radiology.

[157]  Ting-Yim Lee Functional CT: physiological models , 2002 .

[158]  Munawwar Sajjad,et al.  Multimodality agents for tumor imaging (PET, fluorescence) and photodynamic therapy. A possible "see and treat" approach. , 2005, Journal of medicinal chemistry.

[159]  Kathryn E. Luker,et al.  Optical Imaging: Current Applications and Future Directions , 2007, Journal of Nuclear Medicine.

[160]  Chen Chang,et al.  High-contrast paramagnetic fluorescent mesoporous silica nanorods as a multifunctional cell-imaging probe. , 2008, Small.