Stability multipliers for MIMO monotone nonlinearities

For block structured monotone or incrementally positive n-dimensional nonlinearities, the largest class of convolution operators (multipliers) that preserve positivity is derived. These multipliers can be used in conjunction with positivity and IQC stability criteria to evaluate stability and robustness of MIMO feedback systems.

[1]  P. Falb,et al.  Stability Conditions for Systems with Monotone and Slope-Restricted Nonlinearities , 1968 .

[2]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[3]  R.R. Mohler,et al.  Stability and robustness of multivariable feedback systems , 1981, Proceedings of the IEEE.

[4]  Michael G. Safonov,et al.  An algorithm to compute multipliers for repeated monotone nonlinearities , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[5]  G. Zames On the input-output stability of time-varying nonlinear feedback systems--Part II: Conditions involving circles in the frequency plane and sector nonlinearities , 1966 .

[6]  Optimization of Multipliers for Nonlinear Input-Output Stability Tests , 1985, 1985 American Control Conference.

[7]  G. Zames On the input-output stability of time-varying nonlinear feedback systems Part one: Conditions derived using concepts of loop gain, conicity, and positivity , 1966 .

[8]  M. Safonov,et al.  Zames-Falb multipliers for MIMO nonlinearities , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[9]  R. Saeks,et al.  The analysis of feedback systems , 1972 .

[10]  A. Rantzer,et al.  System analysis via integral quadratic constraints , 1997, IEEE Trans. Autom. Control..

[11]  Alexandre Megretski,et al.  New results for analysis of systems with repeated nonlinearities , 2001, Autom..

[12]  Michael G. Safonov,et al.  All multipliers for repeated monotone nonlinearities , 2002, IEEE Trans. Autom. Control..