Understanding metal–organic frameworks for photocatalytic solar fuel production

The fascinating chemical and physical properties of MOFs have recently stimulated exploration of their application for photocatalysis. Despite the intense research effort, the efficiency of most photocatalytic MOFs for solar fuel generation is still very modest. In this highlight we analyse the current status of the field and stress the potential of advanced spectroscopic techniques to gain structural and mechanistic insight and hence support the future development of MOFs to harvest and store solar energy.

[1]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[2]  D. Bahnemann,et al.  Laser-flash-photolysis-spectroscopy: a nondestructive method? , 2017, Faraday discussions.

[3]  Li Shi,et al.  Efficient Visible-Light-Driven Carbon Dioxide Reduction by a Single-Atom Implanted Metal-Organic Framework. , 2016, Angewandte Chemie.

[4]  Christopher H. Hendon,et al.  Chemical principles for electroactive metal–organic frameworks , 2016 .

[5]  Chunying Duan,et al.  Metal–Organic Frameworks: Versatile Materials for Heterogeneous Photocatalysis , 2016 .

[6]  A. Douhal,et al.  Photochemistry of Zr-based MOFs: ligand-to-cluster charge transfer, energy transfer and excimer formation, what else is there? , 2016, Physical chemistry chemical physics : PCCP.

[7]  A. Douhal,et al.  Competitive Excimer Formation and Energy Transfer in Zr-Based Heterolinker Metal-Organic Frameworks. , 2016, Chemistry.

[8]  Y. Horiuchi,et al.  Construction of Pt complex within Zr-based MOF and its application for hydrogen production under visible-light irradiation , 2016, Research on Chemical Intermediates.

[9]  E. Reisner,et al.  Clean Donor Oxidation Enhances the H2 Evolution Activity of a Carbon Quantum Dot-Molecular Catalyst Photosystem. , 2016, Angewandte Chemie.

[10]  Hai‐Long Jiang,et al.  Encapsulating a Co(II) Molecular Photocatalyst in Metal–Organic Framework for Visible-Light-Driven H2 Production: Boosting Catalytic Efficiency via Spatial Charge Separation , 2016 .

[11]  Abdullah M. Asiri,et al.  Metal-Organic Framework (MOF) Compounds: Photocatalysts for Redox Reactions and Solar Fuel Production. , 2016, Angewandte Chemie.

[12]  Aron Walsh,et al.  Electronic origins of photocatalytic activity in d0 metal organic frameworks , 2016, Scientific Reports.

[13]  Mircea Dincă,et al.  Electrically Conductive Porous Metal-Organic Frameworks. , 2016, Angewandte Chemie.

[14]  A. Douhal,et al.  Spectral and dynamical properties of a Zr-based MOF. , 2016, Physical chemistry chemical physics : PCCP.

[15]  M. A. van der Veen,et al.  Organic Linker Defines the Excited-State Decay of Photocatalytic MIL-125(Ti)-Type Materials. , 2016, ChemSusChem.

[16]  D. Vanpoucke,et al.  Understanding Intrinsic Light Absorption Properties of UiO-66 Frameworks: A Combined Theoretical and Experimental Study. , 2015, Inorganic chemistry.

[17]  P. Yang,et al.  Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. , 2015, Journal of the American Chemical Society.

[18]  Z. Li,et al.  Fe-Based Metal–Organic Frameworks for Highly Selective Photocatalytic Benzene Hydroxylation to Phenol , 2015 .

[19]  Yi Luo,et al.  Visible-Light Photoreduction of CO2 in a Metal-Organic Framework: Boosting Electron-Hole Separation via Electron Trap States. , 2015, Journal of the American Chemical Society.

[20]  Omar K. Farha,et al.  A porous proton-relaying metal-organic framework material that accelerates electrochemical hydrogen evolution , 2015, Nature Communications.

[21]  Xinchen Wang,et al.  Multifunctional Metal-Organic Frameworks for Photocatalysis. , 2015, Small.

[22]  Christopher H. Hendon,et al.  Chemical principles underpinning the performance of the metal–organic framework HKUST-1 , 2015, Chemical science.

[23]  Z. Li,et al.  Visible-light-assisted aerobic photocatalytic oxidation of amines to imines over NH2-MIL-125(Ti) , 2015 .

[24]  Z. Li,et al.  Introduction of a mediator for enhancing photocatalytic performance via post-synthetic metal exchange in metal-organic frameworks (MOFs). , 2015, Chemical communications.

[25]  F. Kapteijn,et al.  Correction: Enhancing optical absorption of metal-organic frameworks for improved visible light photocatalysis. , 2015, Chemical Communications.

[26]  F. Kapteijn,et al.  Co@NH2-MIL-125(Ti): cobaloxime-derived metal–organic framework-based composite for light-driven H2 production , 2015 .

[27]  Aron Walsh,et al.  Electronic Structure Modulation of Metal–Organic Frameworks for Hybrid Devices , 2014, ACS applied materials & interfaces.

[28]  Z. Li,et al.  Fe-Based MOFs for Photocatalytic CO2 Reduction: Role of Coordination Unsaturated Sites and Dual Excitation Pathways , 2014 .

[29]  K. Domen,et al.  Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. , 2014, Chemical Society reviews.

[30]  Y. Horiuchi,et al.  Understanding TiO2 photocatalysis: mechanisms and materials. , 2014, Chemical reviews.

[31]  K. Lillerud,et al.  Synthesis and characterization of amine-functionalized mixed-ligand metal-organic frameworks of UiO-66 topology. , 2014, Inorganic chemistry.

[32]  Wenbin Lin,et al.  Metal-organic frameworks for artificial photosynthesis and photocatalysis. , 2014, Chemical Society reviews.

[33]  Y. Horiuchi,et al.  Development of a Ru complex-incorporated MOF photocatalyst for hydrogen production under visible-light irradiation. , 2014, Chemical communications.

[34]  F. Kapteijn,et al.  Metal–organic frameworks as heterogeneous photocatalysts: advantages and challenges , 2014 .

[35]  Aron Walsh,et al.  Electronic Chemical Potentials of Porous Metal–Organic Frameworks , 2014, Journal of the American Chemical Society.

[36]  Freek Kapteijn,et al.  Fascinating chemistry or frustrating unpredictability: observations in crystal engineering of metal–organic frameworks , 2013 .

[37]  Osamu Ishitani,et al.  CO2 capture by a rhenium(I) complex with the aid of triethanolamine. , 2013, Journal of the American Chemical Society.

[38]  Freek Kapteijn,et al.  Enhancing optical absorption of metal-organic frameworks for improved visible light photocatalysis. , 2013, Chemical communications.

[39]  Lin Yang,et al.  Studies on photocatalytic CO(2) reduction over NH2 -Uio-66(Zr) and its derivatives: towards a better understanding of photocatalysis on metal-organic frameworks. , 2013, Chemistry.

[40]  Seth M. Cohen,et al.  Enhanced Photochemical Hydrogen Production by a Molecular Diiron Catalyst Incorporated into a Metal–Organic Framework , 2013, Journal of the American Chemical Society.

[41]  Xiaodong Chen,et al.  Understanding the Role of Nanostructures for Efficient Hydrogen Generation on Immobilized Photocatalysts , 2013 .

[42]  A. Guda,et al.  Pump-Flow-Probe X-Ray Absorption Spectroscopy as a Tool for Studying Intermediate States of Photocatalytic Systems. , 2013, The journal of physical chemistry. C, Nanomaterials and interfaces.

[43]  Y. Horiuchi,et al.  Recent advances in visible-light-responsive photocatalysts for hydrogen production and solar energy conversion--from semiconducting TiO2 to MOF/PCP photocatalysts. , 2013, Physical chemistry chemical physics : PCCP.

[44]  Aron Walsh,et al.  Engineering the optical response of the titanium-MIL-125 metal-organic framework through ligand functionalization. , 2013, Journal of the American Chemical Society.

[45]  Ying Dai,et al.  Chemical adsorption enhanced CO2 capture and photoreduction over a copper porphyrin based metal organic framework. , 2013, ACS applied materials & interfaces.

[46]  Jiaqiang Wang,et al.  Significantly enhanced photocatalytic hydrogen evolution under visible light over CdS embedded on metal-organic frameworks. , 2013, Chemical communications.

[47]  G. Wiederrecht,et al.  Light-harvesting and ultrafast energy migration in porphyrin-based metal-organic frameworks. , 2013, Journal of the American Chemical Society.

[48]  H. García,et al.  Evidence of photoinduced charge separation in the metal-organic framework MIL-125(Ti)-NH2. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[49]  Cheng Wang,et al.  Metal–Organic Frameworks for Light Harvesting and Photocatalysis , 2012 .

[50]  Yangen Zhou,et al.  Amine-functionalized zirconium metal-organic framework as efficient visible-light photocatalyst for aerobic organic transformations. , 2012, Chemical communications.

[51]  F. Jaouen,et al.  Metal organic frameworks for electrochemical applications , 2012 .

[52]  Masakazu Saito,et al.  Visible-Light-Promoted Photocatalytic Hydrogen Production by Using an Amino-Functionalized Ti(IV) Metal–Organic Framework , 2012 .

[53]  P. Wiper,et al.  A water-stable porphyrin-based metal-organic framework active for visible-light photocatalysis. , 2012, Angewandte Chemie.

[54]  Chao Zou,et al.  Five porphyrin-core-dependent metal–organic frameworks and framework-dependent fluorescent properties , 2012 .

[55]  Cheng Wang,et al.  Pt nanoparticles@photoactive metal-organic frameworks: efficient hydrogen evolution via synergistic photoexcitation and electron injection. , 2012, Journal of the American Chemical Society.

[56]  Zhaohui Li,et al.  An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. , 2012, Angewandte Chemie.

[57]  Hong-Cai Zhou,et al.  Metal-organic frameworks for separations. , 2012, Chemical reviews.

[58]  J. Long,et al.  Introduction to metal-organic frameworks. , 2012, Chemical reviews.

[59]  W. Marsden I and J , 2012 .

[60]  Zhigang Xie,et al.  Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. , 2011, Journal of the American Chemical Society.

[61]  N. Ernsting,et al.  Femtosecond broadband fluorescence upconversion spectroscopy: improved setup and photometric correction. , 2011, The Review of scientific instruments.

[62]  Chao Zou,et al.  A Sn(IV)-porphyrin-based metal-organic framework for the selective photo-oxygenation of phenol and sulfides. , 2011, Inorganic chemistry.

[63]  R. Richardson,et al.  A renewable amine for photochemical reduction of CO(2). , 2011, Nature chemistry.

[64]  A. Walsh,et al.  Photostimulated reduction processes in a titania hybrid metal-organic framework. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[65]  W. Kaim,et al.  Spectroelectrochemistry: the best of two worlds. , 2009, Chemical Society reviews.

[66]  John T. M. Kennis,et al.  Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems , 2009, Photosynthesis Research.

[67]  Y. Kataoka,et al.  Photocatalytic hydrogen production from water using porous material [Ru2(p-BDC)2]n , 2009 .

[68]  Gerard P M van Klink,et al.  Isoreticular MOFs as efficient photocatalysts with tunable band gap: an operando FTIR study of the photoinduced oxidation of propylene. , 2008, ChemSusChem.

[69]  Carlo Lamberti,et al.  A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. , 2008, Journal of the American Chemical Society.

[70]  B. Ferrer,et al.  Semiconductor behavior of a metal-organic framework (MOF). , 2007, Chemistry.

[71]  H. García,et al.  Applications for Metal−Organic Frameworks (MOFs) as Quantum Dot Semiconductors , 2007 .

[72]  Bartolomeo Civalleri,et al.  Ab-initio prediction of materials properties with CRYSTAL: MOF-5 as a case study , 2006 .

[73]  J. Richmond Advanced Synthesis & Catalysis , 2006 .

[74]  K. Lillerud,et al.  Electronic and vibrational properties of a MOF-5 metal-organic framework: ZnO quantum dot behaviour. , 2004, Chemical communications.

[75]  A. Corma,et al.  Zeolite-based photocatalysts. , 2004, Chemical communications.

[76]  Pavel Hobza,et al.  Electronic structures, vibrational spectra, and revised assignment of aniline and its radical cation: Theoretical study , 2003 .

[77]  M. Ratner Chemical applications of ultrafast spectroscopy. By Graham R. Fleming, Oxford, New york, 1986. , 1987 .

[78]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.